...
首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Understanding and mitigation of NaTi2(PO4)(3) degradation in aqueous Na-ion batteries
【24h】

Understanding and mitigation of NaTi2(PO4)(3) degradation in aqueous Na-ion batteries

机译:Nati2(PO4)(3)降解Na离子电池的理解和减轻

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Aqueous Na-ion batteries are deemed to be among the most suitable candidates for future large-scale stationary energy storage systems. However, there are still a number of problems to be solved before their full potential can be utilized such as instability of the aqueous electrolyte/electrode interface towards electrolyte decomposition, chemical dissolution, and other side reactions. The mechanism of electrochemically induced degradation in NASICON-structured NaTi2(PO4)(3) is studied in detail using various chemical and electrochemical techniques. The results unambiguously show that irreversible capacity fade, especially severe at low charging rates, is an electrochemically induced chemical dissolution of the active material. The oxygen reduction induced self-discharge reaction leading to a local pH increase is indicated as the main culprit for the material degradation and capacity loss during charge-discharge cycling. Although the degradation products form an insoluble Ti-rich interphasial layer similar to non-aqueous solid-electrolyte interphases, in this case it is shown to be insufficient for providing even kinetic stability of the electrochemical interface. Artificial protective layers applied using atomic layer deposition of Al2O3 directly on the electrode surface are shown to be a simple and scalable approach to significantly stabilize the electrodes towards oxygen attack and limit the rate of negative electrode degradation. The new understanding of irreversible degradation and its mitigation techniques presented in this work offer a pathway to viable and scalable strategies that enable and exploit the high-performance potential of this and many other aqueous battery materials.
机译:水性钠离子电池被认为是未来大型固定式储能系统最合适的候选电池之一。然而,在充分利用其潜力之前,仍有许多问题需要解决,例如水电解质/电极界面对电解质分解的不稳定性、化学溶解和其他副反应。利用各种化学和电化学技术详细研究了NASICON结构NaTi2(PO4)(3)的电化学降解机理。结果明确地表明,不可逆容量衰减,尤其是在低充电速率下,是由电化学引起的活性物质的化学溶解。氧还原引发的自放电反应导致局部pH值升高,是充放电循环过程中材料降解和容量损失的主要原因。尽管降解产物形成了类似于非水固体电解质相间的不溶性富钛相间层,但在这种情况下,它不足以提供电化学界面的均匀动力学稳定性。通过在电极表面直接沉积Al2O3原子层来施加人工保护层被证明是一种简单且可扩展的方法,可以显著稳定电极,防止氧气侵蚀,并限制负极退化的速度。这项工作中提出的对不可逆降解及其缓解技术的新理解为可行且可扩展的策略提供了一条途径,这些策略能够实现并利用这种和许多其他水性电池材料的高性能潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号