...
首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Reduced energy loss enabled by thiophene-based interlayers for high performance and stable perovskite solar cells
【24h】

Reduced energy loss enabled by thiophene-based interlayers for high performance and stable perovskite solar cells

机译:基于噻吩的中间层实现的高性能和稳定钙钛矿太阳能电池的能量损失降低

获取原文
获取原文并翻译 | 示例

摘要

The excessive energy loss (E-loss) mainly resulting from the energetic offsets between different layers and defect state-induced charge trapping and recombination limits the further development of perovskite solar cells (PVSCs). In this work, three solution-processed thiophene-based interlayers were firstly introduced to reduce the E-loss in PVSCs by optimizing the surface electronic states of the SnO2 electron transport layer (ETL) and improving the MAPbI(3) film quality. The thiophene-based interlayers improve the conductivity and reduce the work function of SnO2 ETLs, resulting in more efficient electron transportation. Downward band-bending occurs at the SnO2/MAPbI(3) interface owing to the permanent dipole moment of these interlayers, which enables more efficient charge carrier extraction and lower E-loss for PVSCs. In addition, the sulfur atoms of the thiophene rings with a lone pair of electrons can bond with the under-coordinated Pb2+ of MAPbI(3), thus passivating the ion defect states and reducing the defect state-induced charge carrier trapping and recombination at the SnO2/MAPbI(3) interface. These interlayers change the hydrophilicity of the SnO2 surface and promote the formation of high quality MAPbI(3) films with larger grain size and fewer grain boundaries, improving the stability of PVSCs. Combining these desirable advantages, the optimized MAPbI(3)-based PVSCs achieve a highest power conversion efficiency (PCE) of 20.61% with a high open-circuit voltage (V-OC) of 1.117 V and fill factor (FF) over 80%, which is higher than that of the pristine PVSCs with a highest PCE of 17.54%. The optimized PVSCs without any encapsulation show higher thermal and humidity stability compared with the pristine PVSCs. Therefore, this work demonstrates an effective way to reduce E-loss, as well as improving both the performance and stability of PVSCs by utilizing thiophene-based interlayers to modify the interface of SnO2/MAPbI(3).
机译:钙钛矿型太阳能电池(PVSCs)的进一步发展,主要是由于不同层之间的能量偏移和缺陷态引起的电荷俘获和复合而导致的过度能量损失(E损失)。本工作首次引入了三种溶液处理的噻吩基中间层,通过优化SnO2电子传输层(ETL)的表面电子态和提高MAPbI(3)薄膜质量来降低PVSCs中的电子损耗。基于噻吩的中间层提高了SnO2 ETL的导电性,降低了其功函数,从而提高了电子传输效率。由于SnO2/MAPbI(3)层间的永久偶极矩,在SnO2/MAPbI(3)界面上会发生向下的带弯曲,这使得PVSCs能够更有效地提取电荷载流子并降低电子损耗。此外,噻吩环上的硫原子与一对孤对电子可以与MAPbI(3)的欠配位Pb2+键合,从而钝化离子缺陷态,减少缺陷态在SnO2/MAPbI(3)界面引起的电荷载流子俘获和复合。这些中间层改变了SnO2表面的亲水性,促进了高质量MAPbI(3)薄膜的形成,具有更大的晶粒尺寸和更少的晶界,提高了PVSCs的稳定性。结合这些理想的优点,优化的基于MAPbI(3)的PVSC实现了20.61%的最高功率转换效率(PCE),高开路电压(V-OC)为1.117V,填充因子(FF)超过80%,高于原始PVSC的最高PCE为17.54%。与原始PVSCs相比,未经任何封装的优化PVSCs具有更高的热稳定性和湿度稳定性。因此,本研究证明了利用噻吩基中间层来修饰SnO2/MAPbI(3)的界面,可以有效地降低电子损耗,同时提高PVSCs的性能和稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号