首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Orientation of a bipolar membrane determines the dominant ion and carbonic species transport in membrane electrode assemblies for CO2 reduction dagger
【24h】

Orientation of a bipolar membrane determines the dominant ion and carbonic species transport in membrane electrode assemblies for CO2 reduction dagger

机译:双极膜的取向决定了CO2减少匕首膜电极组件中的显性离子和碳碳格等

获取原文
获取原文并翻译 | 示例
           

摘要

A bipolar membrane (BPM), consisting of a cation and an anion exchange layer (CEL and AEL), can be used in an electrochemical cell in two orientations: reverse bias and forward bias. A reverse bias is traditionally used to facilitate water dissociation and control the pH at either side. A forward bias has been proposed for several applications, but insight into the ion transport mechanism is lacking. At the same time, when implementing a BPM in a membrane electrode assembly (MEA) for CO2 reduction, the BPM orientation determines the environment of the CO2 reduction catalyst, the anolyte interaction and the direction of the electric field at the interface layer. In order to understand the transport mechanisms of ions and carbonic species within a bipolar membrane electrode assembly (BPMEA), these two orientations were compared by performing CO2 reduction. Here, we present a novel BPMEA using a Ag catalyst layer directly deposited on the membrane layer at the vapour-liquid interface. In the case of reverse bias, the main ion transport mechanism is water dissociation. CO2 can easily crossover through the CEL as neutral carbonic acid due to the low pH in the reverse bias. Once it enters the AEL, it will be transported to the anolyte as (bi)carbonate because of the presence of hydroxide ions. When the BPM is in the forward bias mode, with the AEL facing the cathode, no net water dissociation occurs. This not only leads to a 3 V lower cathodic potential but also reduces the flux of carbonic species through the BPM. As the pH in the AEL is higher, (bi)carbonate is transported towards the CEL, which then blocks the majority of those species. However, this forward bias mode showed a lower selectivity towards CO production and a higher salt concentration was observed at the cathode surface. The high overpotential and CO2 crossover in reverse bias can be mitigated via engineering BPMs, providing higher potential for future application than that of a BPM in forward bias owing to the intrinsic disadvantages of salt recombination and poor faradaic efficiency for CO2 reduction.
机译:由阳离子和阴离子交换层(CEL和AEL)组成的双极膜(BPM)可在电化学电池中以两种方向使用:反向偏压和正向偏压。传统上,反向偏压用于促进水离解和控制两侧的pH值。一些应用提出了正向偏压,但对离子传输机制缺乏深入了解。同时,当在用于CO2还原的膜电极组件(MEA)中实施BPM时,BPM方向决定了CO2还原催化剂的环境、阳极液相互作用和界面层的电场方向。为了了解离子和碳物种在双极膜电极组件(BPMEA)内的传输机制,通过CO2还原对这两种取向进行了比较。在这里,我们提出了一种新的BPMEA,使用银催化剂层直接沉积在汽液界面的膜层上。在反向偏压的情况下,主要的离子传输机制是水离解。由于反向偏压中的pH值较低,CO2很容易以中性碳酸的形式通过CEL。一旦进入AEL,由于氢氧化物离子的存在,它将以(铋)碳酸盐的形式输送到阳极液中。当BPM处于正向偏压模式,AEL朝向阴极时,不会发生净水离解。这不仅导致阴极电位降低3 V,而且还降低了碳物种通过BPM的通量。由于AEL中的pH值较高,(bi)碳酸盐被输送到CEL,从而阻止了大多数物种。然而,这种正向偏压模式显示出较低的CO生成选择性,并且在阴极表面观察到较高的盐浓度。反向偏压中的高过电位和CO2交叉可以通过工程BPM来缓解,由于盐复合的固有缺点和CO2还原的法拉第效率差,与正向偏压中的BPM相比,提供了更高的未来应用潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号