...
首页> 外文期刊>Journal of Molecular Liquids >Specific heat capacity of molten salt-based nanofluids in solar thermal applications: A paradigm of two modern ensemble machine learning methods
【24h】

Specific heat capacity of molten salt-based nanofluids in solar thermal applications: A paradigm of two modern ensemble machine learning methods

机译:太阳能热应用中熔融盐基纳米流体的比热容量:两种现代集合机学习方法的范式

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The quantitative determination of specific heat capacity (SHC) of molten (nitrate) salt-based nanofluids helps to control the start-up heat and prevent overheating when deployed as a working heat transfer fluid in a wide range of solar thermal applications. Thus, accurate measurement of the SHC and capturing the melting point is of paramount importance in the molten salt-based nanofluids' characterization analyses applied in solar collectors. In this research, two modern ensemble machine learning models, Extra Tree Regression (ETR) and AdaBoost Regression (ABR), were developed based on 2,384 datasets, including solid mass fraction (w), temperature (T), SHC of base fluid (C-P(Base)), mean diameter (D-p), and density (rho(p)) of nanoparticle as all independent input variables and the SHC of molten salt-based nanofluids (C-P(MS-nf)) as the target. Herein, the stepwise forward method and mutual information were addressed to determine the best input combination and sensitivity analysis. The provided models were validated using Random Forest (RF) and Boosted Regression Tree (BRT) as two powerful other ensemble models. The results demonstrated that ETR model in terms of (R = 0.9964, RMSE = 0.1566, and U-95%=3.6062) outperformed the ABR (R = 0.9949, RMSE = 0.1855, and U-95%=3.6009), RF (R = 0.9922, RMSE = 0.2326, and U-95%=3.5904), and BRT (R = 0.9907, RMSE = 0.2508, and U-95%=3.5857). The SHC of molten salt base fluid was identified as the most significant factor in estimating the SHC of molten salt-based nanofluids. (C) 2021 Elsevier B.V. All rights reserved.
机译:定量测定熔融(硝酸盐)盐基纳米流体的比热容(SHC)有助于控制启动热,并在广泛的太阳能热应用中作为工作传热流体使用时防止过热。因此,准确测量SHC和捕捉熔点对于熔盐基纳米流体在太阳能集热器中的特性分析至关重要。在本研究中,基于2384个数据集开发了两个现代集成机器学习模型,即额外树回归(ETR)和AdaBoost回归(ABR),包括固体质量分数(w)、温度(T)、基础流体SHC(C-P(基础))、平均直径(D-P),纳米颗粒的密度(rho(p))作为所有独立的输入变量,熔盐基纳米流体(C-p(MS-nf))的SHC作为目标。在本文中,采用逐步向前法和互信息法来确定最佳输入组合和灵敏度分析。所提供的模型使用随机森林(RF)和增强回归树(BRT)作为两个强大的其他集成模型进行了验证。结果表明,ETR模型在(R=0.9964,RMSE=0.1566,U-95%=3.6062)方面优于ABR(R=0.9949,RMSE=0.1855,U-95%=3.6009),RF(R=0.9922,RMSE=0.2326,U-95%=3.5904)和BRT(R=0.9907,RMSE=0.2508,U-95%=3.5857)。熔盐基流体的SHC被认为是估算熔盐基纳米流体SHC的最重要因素。(c)2021爱思唯尔B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号