首页> 外文期刊>Journal of Molecular Liquids >Adsorption of nanoparticles on glass bead surface for enhancing proppant performance: A systematic experimental study
【24h】

Adsorption of nanoparticles on glass bead surface for enhancing proppant performance: A systematic experimental study

机译:纳米颗粒对玻璃珠表面的吸附,提高支撑剂性能:系统实验研究

获取原文
获取原文并翻译 | 示例
           

摘要

Effective coating of nanoparticles on the proppant pack has been regarded as a promising technique for enhancing proppant functions to achieve multiple objectives. In this work, a dynamic soaking technique which we refer as "pseudo-continuous fixed bed (PCFB)" adsorption has been employed for the first time for coating of four bare NPs (Al2O3, SiO2, MgO, ZrO2) with divergent physical and chemical properties, onto a fixed adsorbent glass bead proppant pack. A systematic study of the formulated nanofluid (brine+NPs) adsorption onto the proppant pack was conducted vis-a-vis salinity (0 to 10.5 wt% NaCl), temperature (298.15 to 348.15 K), NPs loading (0.01 to 0.2 wt%), and injection rates (1 to 50 mL.min(-1)). Nanofluid stability was measured via zeta-potential measurements, where NP adsorption was verified through optical microscopy and atomic force microscopy. Results show that PCFB adsorption of NPs with higher specific surface area resulted in faster adsorption (adsorbed in similar to 25 mins) with >99% immobilisation of NPs on the proppant pack. Adsorption kinetics showed reasonable conformity with the pseudo-first-order model, where isothermal adsorption followed a Sips model. The adsorption capacity of MgO NPs (specific surface area 50-80 m(2).g(-1), 7.0 wt% NaCl) at 298.15 K was found to be the highest when compared with silica NPs. Accordingly, this method can be used for onsite treatment of proppants with nanoparticles, which can then be injected into a fractured formation to achieve multiple objectives. (C) 2021 Elsevier B.V. All rights reserved.
机译:在支撑剂包装上有效包覆纳米颗粒被认为是增强支撑剂功能以实现多个目标的一种有前途的技术。在这项工作中,我们首次采用动态浸泡技术(我们称之为“伪连续固定床(PCFB)”吸附),将具有不同物理和化学性质的四种裸NPs(Al2O3、SiO2、MgO、ZrO2)涂覆到固定吸附剂玻璃珠支撑剂包块上。根据盐度(0至10.5 wt%NaCl)、温度(298.15至348.15 K)、NPs负载(0.01至0.2 wt%)和注入速率(1至50 mL.min(-1))对配方纳米流体(盐水+NPs)在支撑剂包上的吸附进行了系统研究。纳米流体稳定性通过zeta电位测量进行测量,NP吸附通过光学显微镜和原子力显微镜进行验证。结果表明,PCFB对具有更高比表面积的NPs的吸附导致更快的吸附(吸附时间类似于25分钟),且NPs在支撑剂包上的固定率>99%。吸附动力学符合拟一级模型,等温吸附遵循Sips模型。MgO NPs的吸附容量(比表面积50-80 m(2))。与二氧化硅NPs相比,298.15 K下的g(-1),7.0 wt%NaCl)是最高的。因此,该方法可用于使用纳米颗粒对支撑剂进行现场处理,然后将纳米颗粒注入裂缝地层以实现多个目标。(c)2021爱思唯尔B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号