...
首页> 外文期刊>Journal of Materials Science >String electrospinning based on the standing wave vibration
【24h】

String electrospinning based on the standing wave vibration

机译:基于驻波振动的绳静电纺丝

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Preparation of high-quality nanofibers with low applied voltage remains a challenge for needleless electrospinning. In this work, we developed a novel electrospinning technique based on the standing wave vibration of a string. The effects of the process parameters and string parameters on nanofiber diameter and productivity were investigated. The results indicated that standing wave electrospinning is competitive in terms of fiber diameter and productivity when compared with single conventional needle electrospinning. Moreover, the threshold voltage of standing wave electrospinning (18 kV) was approximately 30% lower than most of the current needleless electrospinning techniques (30 kV). The finest nanofiber with a diameter of 173 +/- 48 nm was prepared at an applied voltage of 28 kV, a spinning distance of 10 cm, and a standing wave number of 3. The fiber diameter and productivity were significantly influenced by the string diameter and shape instead of the electrical conductivity of the string. The results demonstrated the considerable potential of standing wave electrospinning for fine nanofiber preparation under a low applied voltage.
机译:低电压下制备高质量的纳米纤维仍然是无针静电纺丝的一个挑战。在这项工作中,我们开发了一种基于弦的驻波振动的新型静电纺丝技术。研究了工艺参数和串参数对纳米纤维直径和生产率的影响。结果表明,与单针静电纺丝相比,驻波静电纺丝在纤维直径和生产率方面具有竞争力。此外,驻波静电纺丝(18kV)的阈值电压比目前大多数无针静电纺丝技术(30kV)低约30%。在28kv的外加电压、10cm的旋转距离和3的驻波数下制备了直径为173+/-48nm的最细纳米纤维。纤维直径和生产率显著受细绳直径和形状的影响,而不是细绳的导电性。结果表明,驻波静电纺丝在低电压下制备精细纳米纤维方面具有巨大的潜力。

著录项

  • 来源
    《Journal of Materials Science》 |2021年第15期|共14页
  • 作者单位

    Beijing Univ Chem Technol Coll Mech &

    Elect Engn Beijing 100029 Peoples R China;

    Beijing Univ Chem Technol Coll Mech &

    Elect Engn Beijing 100029 Peoples R China;

    China Univ Petr State Key Lab Heavy Oil Proc State Key Lab Petr Pollut Control Beijing 102249 Peoples R China;

    Beijing Univ Chem Technol Coll Mech &

    Elect Engn Beijing 100029 Peoples R China;

    Beijing Univ Chem Technol Coll Mech &

    Elect Engn Beijing 100029 Peoples R China;

    Beijing Univ Chem Technol Coll Mech &

    Elect Engn Beijing 100029 Peoples R China;

    Beijing Univ Chem Technol Coll Mech &

    Elect Engn Beijing 100029 Peoples R China;

    Beijing Univ Chem Technol Coll Mech &

    Elect Engn Beijing 100029 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号