首页> 外文期刊>Journal of Materials Science >On the austenite stability of cryogenic Ni steels: microstructural effects: a review
【24h】

On the austenite stability of cryogenic Ni steels: microstructural effects: a review

机译:论低温镍钢的奥氏体稳定性:微观结构效应:综述

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Austenite stability is essentially important in improving the cryogenic toughness of cryogenic Ni steels and guiding the development of Ni-saving cryogenic steels. The austenite stability in the cryogenic Ni steels is influenced by many microstructure features, making it a complicated issue which is lack of a systematic discussion. In this article, the microstructural effects on the thermal and mechanical stability of austenite in the cryogenic Ni steels are reviewed and discussed. The thermal stability of austenite (TSA) will be enhanced by the enrichment of austenite-stabilizing elements in the austenite which decreases the martensite-start (M-s) temperature. The grain refinement enhances the TSA by synergistically increasing the nonchemical driving force for the martensite transformation and the concentrations of austenite-stabilizing elements in the austenite. The excessive increase in the volume fraction of austenite weakens the TSA by decreasing the concentrations of austenite-stabilizing elements in the austenite. The film austenite is usually thermally more stable than the block austenite owing to its higher concentrations of austenite-stabilizing elements. The mechanical stability of austenite (MSA) is also influenced by the concentrations of austenite-stabilizing elements which affect the M-s temperature. The reports on the effect of grain size of austenite on the MSA are inconsistent. Both negligible and important effects of the grain size of austenite on the MSA are analyzed. The grain orientation of austenite affects the MSA via changing the Schmid factor and the additional driving force for the martensite transformation. The orientation which yields a larger value of Schmid factor would exhibit a lower MSA. The MSA is affected by the matrix or the neighboring phase due to the stress and strain partitioning among austenite and other constituent phases. The dislocation multiplication could weaken the MSA by assisting the nucleation and growth of martensite embryo and enhance the MSA by hindering the motion of embryo/austenite interfaces when dislocation density is sufficiently large. Austenite with a combination of a high TSA and a moderate or high MSA is considered to be effective strategies to enhance cryogenic toughness of the cryogenic Ni steels.
机译:奥氏体稳定性对于提高低温镍钢的低温韧性和指导节约镍的低温钢的发展具有重要意义。低温镍钢的奥氏体稳定性受多种微观结构特征的影响,是一个缺乏系统讨论的复杂问题。本文综述和讨论了低温镍钢中微观结构对奥氏体热稳定性和机械稳定性的影响。奥氏体中奥氏体稳定元素的富集将提高奥氏体(TSA)的热稳定性,从而降低马氏体起始(M-s)温度。晶粒细化通过协同增加马氏体转变的非化学驱动力和奥氏体中奥氏体稳定元素的浓度来增强TSA。奥氏体体积分数的过度增加会降低奥氏体中奥氏体稳定元素的浓度,从而削弱TSA。由于奥氏体稳定元素的浓度较高,薄膜奥氏体通常比块状奥氏体更稳定。奥氏体的机械稳定性(MSA)还受奥氏体稳定元素浓度的影响,这些元素会影响M-s温度。关于奥氏体晶粒尺寸对MSA影响的报道不一致。分析了奥氏体晶粒尺寸对MSA的重要影响和可忽略影响。奥氏体的晶粒取向通过改变施密德因子和马氏体相变的附加驱动力来影响MSA。产生较大施密德因子值的方向将显示较低的MSA。由于奥氏体和其他组成相之间的应力和应变分配,MSA受到基体或相邻相的影响。当位错密度足够大时,位错增殖可以通过促进马氏体胚的形核和生长来削弱MSA,并通过阻碍胚/奥氏体界面的运动来增强MSA。结合高TSA和中等或高MSA的奥氏体被认为是提高低温镍钢低温韧性的有效策略。

著录项

  • 来源
    《Journal of Materials Science》 |2021年第22期|共20页
  • 作者单位

    Northwestern Polytech Univ State Key Lab Solidificat Proc Xian 710072 Shaanxi Peoples R China;

    Northwestern Polytech Univ State Key Lab Solidificat Proc Xian 710072 Shaanxi Peoples R China;

    Northwestern Polytech Univ State Key Lab Solidificat Proc Xian 710072 Shaanxi Peoples R China;

    Baoshan Iron &

    Steel Co Ltd Baosteel Res Inst Shanghai 201900 Peoples R China;

    Northwestern Polytech Univ State Key Lab Solidificat Proc Xian 710072 Shaanxi Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号