首页> 外文期刊>Journal of Materials Science >Modeling the damage evolution and recompression behavior during laser shock loading of aluminum microstructures at the mesoscales
【24h】

Modeling the damage evolution and recompression behavior during laser shock loading of aluminum microstructures at the mesoscales

机译:模拟Mesoscales铝微观结构激光冲击造型期间的损伤演化和再现行为

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Damage evolution in metals during laser-shock loading (spallation) is a complex phenomenon accompanied by extremely high temperatures, pressures, and strain rates that affect the void nucleation/growth mechanisms. The current modeling efforts at the atomic scales to investigate the evolution of microstructure undergoing the spall failure at the atomic scales are limited to a hybrid atomistic-continuum method that combines the two-temperature model (TTM) with the molecular dynamics (MD) simulations. This manuscript demonstrates this capability by investigating the mechanisms of nucleation/evolution of voids for a nanocrystalline Al system experiencing an ultrafast laser pulse. This capability, however, is unable to model the laser shock response of experimental systems (with grain sizes greater than 100 nm and thicknesses in the microns) as well as the post-spall behavior (damage growth or recompression behavior). This work combines the TTM with the quasi-coarse-grained dynamics (QCGD) method to extend MD-TTM simulations to the mesoscales. The hybrid QCGD-TTM approach retains the laser energy absorption, heat generation/transfer, and microstructure evolution (melting, defects, and damage) behavior predicted by MD-TTM simulations. The QCGD-TTM simulations allow the investigation of the wave propagation behavior, the evolution of microstructure (defects and damage), temperature, and pressure at the time and length scales of laser-shock experiments. The QCGD-TTM simulations reported here investigate the nucleation and post-spall damage evolution behavior during spall failure of sc-Al and 0.5 mu m grain-sized pc-Al films with a thickness of up to 2 mu m. The QCGD-TTM-predicted damage evolution behavior captures the post-spall behavior observed experimentally and retains the atomistic characteristics of void nucleation and void collapse.
机译:激光冲击加载(层裂)过程中金属的损伤演化是一个复杂的现象,伴随着极高的温度、压力和应变率,这些因素会影响空洞的形核/生长机制。目前在原子尺度上研究经历层裂破坏的微观结构演化的建模工作仅限于混合原子连续统方法,该方法将双温度模型(TTM)与分子动力学(MD)模拟相结合。这篇手稿通过研究经历超快激光脉冲的纳米晶Al系统的空洞形核/演化机制来证明这一能力。然而,这种能力无法模拟实验系统的激光冲击响应(晶粒尺寸大于100 nm,厚度以微米为单位)以及层裂后行为(损伤增长或再压缩行为)。本文将TTM与准粗粒动力学(QCGD)方法相结合,将MD-TTM模拟扩展到中尺度。混合QCGD-TTM方法保留了MD-TTM模拟预测的激光能量吸收、热量产生/传递和微观结构演变(熔化、缺陷和损伤)行为。QCGD-TTM模拟允许在激光冲击实验的时间和长度尺度上研究波的传播行为、微观结构(缺陷和损伤)、温度和压力的演化。本文报道的QCGD-TTM模拟研究了厚度高达2μm的sc-Al和0.5μm晶粒尺寸的pc-Al薄膜层裂破坏期间的形核和层裂后损伤演化行为。QCGD-TTM预测的损伤演化行为捕捉了实验观察到的层裂后行为,并保留了空洞形核和空洞坍塌的原子特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号