...
首页> 外文期刊>Journal of Materials Processing Technology >Determining processing behaviour of pure Cu in laser powder bed fusion using direct micro-calorimetry
【24h】

Determining processing behaviour of pure Cu in laser powder bed fusion using direct micro-calorimetry

机译:用直接微量热量测定激光粉床融合中纯Cu的处理行为

获取原文
获取原文并翻译 | 示例
           

摘要

Copper is challenging to process by laser powder bed fusion (LPBF) given its high reflectivity at common infrared laser diode wavelengths and high thermal conductivity. Successful deposition of copper in a predictable and repeatable fashion relies on understanding the development of the keyhole melting regime, as well as heating, melting, boiling and vapour formation behaviour when interacting with a laser beam within an LPBF environment. In this study, in situ optical absorptivity measurements are used to clarify the complex physics of the laser material interaction. Absorptivity of laser energy is measured using direct micro-calorimetry and compared to melt pool depth in correlation to processing parameters. The measured absorptivity for a 100 mu m layer thickness of powder was found to be approximately four times higher than that of the bare polished discs. It was also shown that high laser power above 500 W and scan speed up to 150 mm/s are appropriate for effective melting of the powder layer, with these parameters overcoming the threshold required to achieve keyhole melting. This is explained by multiple reflections withing the powder particles and the lower thermal conductivity of packed powder in comparison to bare discs. Melt pool formation was found to be highly unstable and an explosive behavior was observed when in the keyhole regime, caused by high fluctuations in absorptivity values. This work demonstrates calorimetry can be used to monitor melting behaviour in a real-time fashion during processing for this challenging to proces material, thereby avoiding unnecessary parametric optimisation. In addition, the parametric window for optimum processing revealed here can inform future work.
机译:由于铜在普通红外激光二极管波长下的高反射率和高热传导率,激光粉末床聚变(LPBF)对铜的加工具有挑战性。以可预测且可重复的方式成功沉积铜取决于了解小孔熔化状态的发展,以及在LPBF环境中与激光束相互作用时的加热、熔化、沸腾和蒸汽形成行为。在这项研究中,原位光学吸收率测量用于阐明激光与材料相互作用的复杂物理过程。激光能量的吸收率通过直接微量量热法测量,并与熔池深度进行比较,并与工艺参数相关。发现100μm厚粉末的测量吸收率约为裸抛光盘的四倍。研究还表明,500 W以上的高激光功率和高达150 mm/s的扫描速度适用于粉末层的有效熔化,这些参数克服了实现小孔熔化所需的阈值。这可以通过粉末颗粒的多次反射以及与裸盘相比填充粉末的较低导热性来解释。熔池的形成被发现是高度不稳定的,当处于小孔状态时,由于吸收率值的高波动,观察到爆炸行为。这项工作表明,量热法可用于实时监测这种具有挑战性的加工材料在加工过程中的熔化行为,从而避免不必要的参数优化。此外,此处显示的优化处理的参数窗口可以通知未来的工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号