...
首页> 外文期刊>Journal of Materials Processing Technology >Novel WC-reinforced iron-based composites with excellent mechanical properties synthesized by laser additive manufacturing: Underlying role of reinforcement weight fraction
【24h】

Novel WC-reinforced iron-based composites with excellent mechanical properties synthesized by laser additive manufacturing: Underlying role of reinforcement weight fraction

机译:具有激光添加剂制造合成的优异机械性能的新型WC增强的铁基复合材料:加固重量分数的基本作用

获取原文
获取原文并翻译 | 示例
           

摘要

Laser powder bed fusion (LPBF) process was utilized to prepare high-performance steel matrix composites (SMCs) consisting of a tool steel (1.2767 L) matrix with various contents of submicron-sized WC reinforcing particles. The influence of the content of WC reinforcing particles on constitutional phase, microstructural evolution, densification rate and mechanical properties of SMCs was investigated. It shows that the microstructures and mechanical properties of SMC are highly sensitive to the WC-content. A higher weight fraction of WC leads to a reduced martensite start temperature (M-s) since more W and C atoms are dissolved within the iron matrix during the LPBF-process. The microstructure consists of more retained austenite using a higher WC-content. The addition of 2 wt% WC particles enables a significant grain refinement of the iron-based matrix, due to the formation of a (Fe,W)(6)C carbidic network that restricts the growth of the sub-grain boundaries of the parent austenite. This refinement-effect is less pronounced at higher WC content due to the reduced self-diffusion activation energy of the Fe atoms in the parent austenite. Increasing WC-content also increases the thickness of the carbidic network, leading to a reduced directionality in the texture of the composite-microstructure. Compared with the unreinforced steel parts, the composites reinforced with 2 wt% WC show a synergetic reinforcing effect in compressive strength of similar to 3210 MPa and fracture strain up to similar to 30.2 % and ultimate tensile strength of similar to 1677 MPa and elongation of similar to 8.5 %. The improved mechanical properties result from the combined effect of transformation-induced plasticity (TRIP) effect, grain refinement, non-equilibrium grain-boundary strengthening, and nano-scaled precipitation.
机译:采用激光粉末床熔(LPBF)工艺制备了高性能钢基复合材料(SMC),该材料由工具钢(1.2767L)基体和不同含量的亚微米WC增强颗粒组成。研究了WC增强颗粒含量对SMC组成相、显微组织演变、致密化速率和力学性能的影响。结果表明,SMC的微观结构和力学性能对WC含量高度敏感。较高的WC重量分数会导致马氏体起始温度(M-s)降低,因为在LPBF过程中,更多的W和C原子溶解在铁基体中。显微组织由更多的残余奥氏体组成,使用更高的WC含量。添加2 wt%的WC颗粒能够显著细化铁基基体的晶粒,这是因为形成了(Fe,W)(6)C碳化物网络,限制了母奥氏体亚晶界的生长。由于母奥氏体中Fe原子的自扩散活化能降低,这种细化效应在WC含量较高时不太明显。增加WC含量也会增加碳化物网络的厚度,导致复合材料微观结构织构的方向性降低。与未加筋的钢件相比,添加2 wt%WC的复合材料在抗压强度为3210 MPa,断裂应变为30.2%,极限抗拉强度为1677 MPa,延伸率为8.5%时表现出协同增强效应。相变诱导塑性(TRIP)效应、晶粒细化、非平衡晶界强化和纳米尺度沉淀的综合作用导致了力学性能的提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号