...
首页> 外文期刊>Journal of Materials Processing Technology >In-process monitoring of microscale grain protrusions by tracing impulse-discharge energy related to thermal transmission balance on diamond cutting interface
【24h】

In-process monitoring of microscale grain protrusions by tracing impulse-discharge energy related to thermal transmission balance on diamond cutting interface

机译:通过跟踪与钻石切割界面上的热传输平衡相关的脉冲放电能量进行微观粒突起的过程监测

获取原文
获取原文并翻译 | 示例
           

摘要

Stable ground surface depends on abrasive grain protrusions, but it has no way to monitor the wheel topographical state during grinding. Generally, the charge coupled device (CCD) monitoring is employed to onmachine measure 2D grain protrusions, but the whole wheel micro-topography has not been recognized inprocess. In the electro-contact discharge (ECD) truncating of diamond wheel, a thermal transmission balance on diamond cutting interface is proposed to identify the diamond thermochemical removal. Accordingly, the impulse-discharge energy is characterized by discharge waveforms to relate to the microscale grain protrusion topography. The objective is to advance surface grinding by in-process monitoring the whole protrusion topography rather than by on-machine measuring the partial wheel topography. First, the grain top height and area were modeled by the microscale spark-discharge gap and the microsecond grain truncating duration, respectively; then, the influence of kinematic variables and electrical variables on discharge parameters was analyzed to regulate the impulse-discharge energy; finally, the thermochemical removal rate was traced along with the grain protrusion parameters for ground surface quality. It is shown that the diamond thermochemical removal may be regulated by kinematic variables and electrical variables. At the dynamic thermal transmission balance of impulse-discharge energy on diamond cutting interface, the thermochemical removal rate gradually tends to zero, leading to stable grain top height and area for a stable ground surface. As a result, the grain top height and area on the whole wheel surface may be monitored under the critical discharge parameters in relation to grain size during ECD truncating.
机译:稳定的磨削表面取决于磨粒的突出,但在磨削过程中无法监测砂轮的地形状态。一般情况下,电荷耦合器件(CCD)监测被用来在机器上测量二维晶粒突起,但整个车轮的微观形貌在加工过程中尚未得到识别。在金刚石砂轮的电接触放电(ECD)截断过程中,提出了一种金刚石切削界面上的热传递平衡来识别金刚石的热化学去除。因此,脉冲放电能量的特征是放电波形与微尺度晶粒突起形貌有关。其目的是通过在过程中监测整个凸起形貌,而不是通过在机器上测量部分车轮形貌,来推进表面磨削。首先,分别用微尺度火花放电间隙和微秒级晶粒截断时间模拟晶粒顶部高度和面积;然后,分析了运动变量和电气变量对放电参数的影响,以调节脉冲放电能量;最后,追踪了热化学去除率以及用于地面质量的颗粒突出参数。结果表明,金刚石的热化学去除可能受运动学变量和电学变量的调节。在脉冲放电能量在金刚石切割界面上的动态热传递平衡下,热化学去除率逐渐趋于零,导致稳定的颗粒顶部高度和面积,以获得稳定的地面。因此,在ECD截断期间,可以在与粒度相关的临界流量参数下监测整个车轮表面上的粒顶高度和面积。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号