首页> 外文期刊>Journal of Hydrology >Tracing source and transformation of carbon in an epikarst spring-pond system by dual carbon isotopes (C-13-C-14): Evidence of dissolved CO2 uptake as a carbon sink
【24h】

Tracing source and transformation of carbon in an epikarst spring-pond system by dual carbon isotopes (C-13-C-14): Evidence of dissolved CO2 uptake as a carbon sink

机译:双碳同位素(C-13-C-14)追踪梭春 - 池塘系统中碳的追踪源和转化:溶解二氧化碳吸收的证据

获取原文
获取原文并翻译 | 示例
           

摘要

delta C-13 and delta C-14 measurements on dissolved inorganic carbon (DIC), particulate organic carbon (POC) and aquatic plants from a karst spring and two spring-fed ponds in Laqiao, Maolan Township, Libo County, southeastern Guizhou of China in January, July and October of 2013 have been carried out to understand the roles of aquatic photosynthesis through DIC uptake in surface karst waters. The mean (DC)-C-14 and delta C-13 values of DIC for the spring, midstream pond (MP) and downstream pond (DP) are -26 +/- 36 parts per thousand and -13 +/- 2 parts per thousand, 6 +/- 56 parts per thousand and -12 +/- 3 parts per thousand, and 0 +/- 64 parts per thousand and -9 +/- 2 parts per thousand, respectively. The carbon source for the DIC is mainly from biogenic CO2 rather than the dissolution of limestone rock as the delta C-14 and delta C-13 of limestone are about 1000% and 2%, respectively. The enrichment trend of (DCDIC)-C-14 and delta C-13(DIC) from the spring to the DP indicates CO2 exchange between atmospheric CO2 and DIC, because (DC)-C-14 and delta C-13 values of atmospheric CO2 are ca. 50 parts per thousand and -8 parts per thousand, respectively. The average (DCPOC)-C-14 values in the spring, MP and DP were -325 parts per thousand, -123 parts per thousand and -158 parts per thousand, respectively, which are all lower than these of the DIC in each reservoir. The lower (DC)-C-14 values of the POC may be caused by older soil carbon from surface runoff and dust fall. More aquatic algae were formed through photosynthesis in the stream ponds, especially in summer, shown by strongly increased (DCPOC)-C-14 and evidence of growth in EDS/SEM analyses. Furthermore, the (DC)-C-14 values of the submerged aquatic plants range from -153 parts per thousand to -26 parts per thousand, reflecting that the aquatic plants used DIC for photosynthesis. The (DC)-C-14 value of an emergent plant which uses atmospheric CO2 during photosynthesis is 52.5 +/- 0.3%, equivalent to the atmospheric (DC)-C-14. Seasonal variations of (DCDIC)-C-14 and delta C-13(DIC) are influenced by soil CO2 input, primary productivity in the ponds, and CO2 exchange; hydrochemical condition show lower (DC)-C-14 values but higher delta C-13 values in cold/dry season, and vice versa in summer rainy season. A simple mass balance calculation indicates similar to 90% of carbon for the spring DIC is from biogenic CO2, with higher contribution in summer due to higher productivity. Although this simple calculation may overestimate the biogenic CO2, it indicates that organic decomposition is a major carbon source for DIC in the karst hydrological system. The results of the present study have implications for C-14 dating on aquatic plant remains, regional and perhaps global carbon budgets, and the different behaviors of C-13 and C-14 in karst systems.
机译:2013年1月、7月和10月,在中国贵州省荔波县毛兰乡拉桥,对一个岩溶泉和两个泉养池塘的溶解无机碳(DIC)、颗粒有机碳(POC)和水生植物进行了delta C-13和delta C-14测量,以了解水生光合作用通过地表岩溶水中DIC吸收的作用。春季、中游池塘(MP)和下游池塘(DP)的DIC平均值(DC)-C-14和δC-13分别为-26+/-36份/千和-13+/-2份/千、6+/-56份/千和-12+/-3份/千和0+/-64份/千和-9+/-2份/千。DIC的碳源主要来自生物成因的CO2,而不是石灰岩的溶解,因为石灰岩的δC-14和δC-13分别约为1000%和2%。(DCDIC)-C-14和δC-13(DIC)从春季到DP的富集趋势表明大气CO2和DIC之间的CO2交换,因为大气CO2的(DC)-C-14和δC-13值分别约为50份/1000和-8份/1000。春季、MP和DP的平均(DCPOC)-C-14值分别为-325份/千、-123份/千和-158份/千,均低于每个水库的DIC值。POC的较低(DC)-C-14值可能是由地表径流和降尘产生的较老土壤碳造成的。(DCPOC)-C-14的强烈增加和EDS/SEM分析中的生长证据表明,河塘中通过光合作用形成了更多的水生藻类,尤其是在夏季。此外,沉水水生植物的(DC)-C-14值在-153‰到-26‰之间,反映了水生植物利用DIC进行光合作用。在光合作用过程中使用大气CO2的紧急植物的(DC)-C-14值为52.5+/-0.3%,相当于大气(DC)-C-14。(DCDIC)-C-14和δC-13(DIC)的季节变化受土壤CO2输入、池塘初级生产力和CO2交换的影响;水化学条件下,寒冷/干旱季节的(DC)-C-14值较低,但δC-13值较高,夏季雨季则相反。一个简单的质量平衡计算表明,春季DIC中90%的碳来自生物成因的CO2,由于生产率较高,夏季的贡献更大。虽然这种简单的计算可能高估了生物成因的CO2,但表明有机分解是岩溶水文系统中DIC的主要碳源。本研究的结果对水生植物遗骸的C-14定年、区域乃至全球碳收支,以及C-13和C-14在喀斯特系统中的不同行为都有意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号