...
首页> 外文期刊>Journal of Colloid and Interface Science >Ultrasmall Pd and PtPd nanoparticles for highly efficient catalysis directed by predesigned Morchella-inspired encapsulation
【24h】

Ultrasmall Pd and PtPd nanoparticles for highly efficient catalysis directed by predesigned Morchella-inspired encapsulation

机译:超大PD和PTPD纳米颗粒用于高效催化通过预测的莫尔科拉风格的封装

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Although bio-inspired designs for ultrasmall metal nanoparticles (NPs) are likely to play an important role in exploring future heterogeneous catalysis materials, synthesizing these structures while retaining surface activity and avoiding aggregation is challenging. Inspired by the Morchella with the spatially and well- organized porous structures, we proposed a biological strategy to yield NPs with ultrasmall and highly dispersed while maintaining high catalytic activity through surfactin self-assembly. Here, multifunctional Morchella-like biological pores (MBP) nanomaterials (similar to 28 nm) with reduction and encapsulation has been synthesized by surfactin self-assembly, then, ultrasmall PtPd (similar to 2.90 nm) and Pd NPs (similar to 2.87 nm) with coordinated sizes and well-dispersed have been successfully reduced and encapsulated inside the MBP. Notably, the synthesis possesses distinct advantages such as mild reaction conditions, strong controllability, good biological compatibility, low-toxicity and environmental friendliness. The as-prepared MBP-encapsulated ultrasmall PtPd and Pd NPs (M@MBP NPs) exhibited excellent catalytic activity and toxicity resistance for the ethanol oxidation reaction (EOR) in KOH, due to the synergistic effect of MBP and ultra small metal NPs. The current density of PtPd@MBP and Pd@MBP NPs were 3.35 and 2.72 A mg(-1), respectively. Such MBP synthesized and encapsulated nanoparticles open a new frontier for the design and preparation of NPs for various applications, such as catalysis, bioremediation and drug delivery. (C) 2020 Elsevier Inc. All rights reserved.
机译:尽管超小型金属纳米颗粒(NPs)的仿生设计可能在探索未来多相催化材料方面发挥重要作用,但在保持表面活性和避免聚集的同时合成这些结构是一项挑战。受羊肚菌多孔结构的空间和良好组织的启发,我们提出了一种生物策略,以产生超小且高度分散的纳米粒,同时通过表面蛋白自组装保持高催化活性。在这里,通过表面活性剂自组装合成了具有还原和封装功能的多功能羊肚菌样生物孔(MBP)纳米材料(类似于28nm),然后,超小型PtPd(类似于2.90nm)和钯纳米颗粒(类似于2.87nm)被成功还原并封装在MBP内,其尺寸协调且分散良好。值得注意的是,该合成方法具有反应条件温和、可控性强、生物相容性好、低毒、环境友好等显著优点。制备的MBP封装了超小型PtPd和Pd NPs(M@MBP由于MBP和超小型金属NPs的协同作用,NPs在KOH中对乙醇氧化反应(EOR)表现出优异的催化活性和抗毒性。电流密度PtPd@MBP和Pd@MBPNPs分别为3.35和2.72微克(-1)。这种MBP合成和封装的纳米颗粒为纳米颗粒的设计和制备开辟了一个新的前沿,用于催化、生物修复和药物递送等多种应用。(C) 2020爱思唯尔公司版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号