首页> 外文期刊>Journal of Colloid and Interface Science >Dissymmetric interface design of SnO2/TiO2 side-by-side bi-component nanofibers as photoanodes for dye sensitized solar cells: Facilitated electron transport and enhanced carrier separation
【24h】

Dissymmetric interface design of SnO2/TiO2 side-by-side bi-component nanofibers as photoanodes for dye sensitized solar cells: Facilitated electron transport and enhanced carrier separation

机译:SnO2 / TiO2并排双组分纳米纤维的不对称界面设计为染料敏化太阳能电池的光碳:促进电子传输和增强型载体分离

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

SnO2/TiO2 type II heterojunctions are often introduced to enhance the separation efficiency of photogenerated carriers in photoelectrochemical electrodes, while most of these heterojunctions are of core-shell structure, which often limits the synergistic effect from the two components. In this work, dissymmetric SnO2/TiO2 side-by-side bi-component nanofibers (SBNFs) with tunable composition ratios have been pre pared by a novel needleless electrospinning technique with two V-shape connected conductive channels (V-channel electrospinning). Results show that this V-channel electrospinning technique is more stable, controllable and tunable for the large-scale preparation of SBNF materials compared to the traditional electrospinning using two side-by-side metal needles. And these SnO2/TiO2 SBNFs are dissymmetric and comprised of a tiny SnO2 NF (tunable diameter within 20-80 nm) and a Sn-doped TiO2 NF (diameter of similar to 250 nm) with a side-by-side structure. Moreover, the dye-sensitized solar cells (DSSCs) based these dissymmetric SnO2/TiO2 SBNFs show the maximum power conversion efficiency (PCE) of 8.3%, which is 2.59 times that of the ones based on the TiO2 NFs. Series of analyses indicate that the enhancements in PCE could mainly be due to the improved electron transport via SnO2 NFs and the enhanced carrier separation via dissymmetric SnO2/TiO2 heterojunction interface. This research will give some new insight in the preparation of SBNFs for high-performance photoelectrochemical devices. (C) 2020 Elsevier Inc. All rights reserved.
机译:通常引入SnO2/TiO2 II型异质结以提高光电化学电极中光生载流子的分离效率,而这些异质结大多为核壳结构,这通常限制了两种组分的协同效应。在这项工作中,采用一种新型的无针静电纺丝技术,通过两个V形连接导电通道(V通道静电纺丝),制备了成分比可调的不对称SnO2/TiO2并列双组分纳米纤维(SBNFs)。结果表明,与传统的两个并排金属针静电纺丝相比,V型通道静电纺丝技术更稳定、可控和可调,适用于大规模制备SBNF材料。这些SnO2/TiO2 SBNF是不对称的,由微小的SnO2 NF(可调直径在20-80 nm内)和具有并排结构的掺锡TiO2 NF(直径类似于250 nm)组成。此外,基于这些不对称SnO2/TiO2 SBNFs的染料敏化太阳能电池(DSSC)的最大功率转换效率(PCE)为8.3%,是基于TiO2 NFs的太阳能电池的2.59倍。一系列分析表明,PCE的增强主要是由于通过SnO2-NFs改善了电子传输,以及通过不对称SnO2/TiO2异质结界面增强了载流子分离。本研究将为高性能光电化学器件用SBNFs的制备提供一些新的见解。(C) 2020爱思唯尔公司版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号