首页> 外文期刊>Catalysis Letters >Microstructural Investigation of Coke Deposition in Pelleted Catalyst during Downhole Catalytic Upgrading of Heavy Crude Oil Using Porosimetry and X-ray Computed Tomography
【24h】

Microstructural Investigation of Coke Deposition in Pelleted Catalyst during Downhole Catalytic Upgrading of Heavy Crude Oil Using Porosimetry and X-ray Computed Tomography

机译:使用孔隙率和X射线计算断层扫描井下催化升级沉淀催化剂焦催化剂的微观结构研究

获取原文
获取原文并翻译 | 示例
           

摘要

Catalyst pore evolution due to coke and metals (e.g., Ni, V, etc.) deposition from heavy oil catalytic upgrading is studied using nitrogen adsorption-desorption, mercury porosimetry, X-ray computed tomography and Scanning electron microscope (SEM) techniques. These techniques probe the impact of coking on the global pore size distribution and the pore-scale connectivity of pores of different sizes. 24wt% coked NiMo/Al2O3 catalyst was studied. Coke deposition caused active site coverage and pore-mouth blockage making the core pore network inaccessible to reactants as reflected in the nearly loss of total surface area and pore volume observed from porosimetry, while the x-ray computed tomography image shows scanty coke deposits within the microstructure. The SEM image confirmed that pore-mouth blockage due to large coke deposition in the early hours of the upgrading reactions at the outer layer of the catalyst pellets is the major cause of deactivation. The spent catalyst experienced more than 90% drop in surface area with coke deposition on the outer layer of the catalyst far higher than in the centre. Therefore, one of the ways to enhance intra-particle diffusion and limit the impact of coke deposition on the outer layer of the catalyst is either to use nano-catalyst or engineered pore sizes.
机译:利用氮气吸附-脱附、汞孔隙率测定、X射线计算机断层扫描和扫描电子显微镜(SEM)技术研究了重油催化改质过程中焦炭和金属(如镍、钒等)沉积导致的催化剂孔隙演变。这些技术探索了焦化对全球孔径分布的影响,以及不同尺寸孔隙的孔尺度连通性。对24wt%结焦的NiMo/Al2O3催化剂进行了研究。焦炭沉积导致活性部位覆盖和孔口堵塞,使反应物无法接近核心孔隙网络,这反映在孔隙度测定法观察到的总表面积和孔隙体积几乎损失上,而x射线计算机断层扫描图像显示微观结构内有少量焦炭沉积。SEM图像证实,在催化剂颗粒外层的升级反应早期,由于大量焦炭沉积而导致的孔口堵塞是失活的主要原因。废催化剂的表面积下降了90%以上,催化剂外层的积炭远高于中心层。因此,增强颗粒内扩散并限制焦炭沉积对催化剂外层的影响的方法之一是使用纳米催化剂或工程孔径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号