...
首页> 外文期刊>Catalysis Letters >Enhancing Lipase Biosynthesis by Aspergillus Melleus and its Biocatalytic Potential for Degradation of Polyester Vylon-200
【24h】

Enhancing Lipase Biosynthesis by Aspergillus Melleus and its Biocatalytic Potential for Degradation of Polyester Vylon-200

机译:通过曲霉菌熔点及其生物催化潜力增强脂肪酶生物合成,用于聚酯vylon-200降解的生物催化潜力

获取原文
获取原文并翻译 | 示例

摘要

Herein, response surface methodology (RSM) was employed to optimize the bioprocess parameters for improved production of extracellular lipase by Aspergillus melleus and evaluated its biocatalytic potential for degradation of polyester vylon-200. Our previous report showed that pH, incubation time, temperature, and additional nitrogen source had significant effects on lipase biosynthesis. The variance analysis revealed that the established RSM model based on a central composite design for lipase production was significant (p < 0.0001, R-2 = 0.9925). Under the optimized bioprocess conditions of pH 5.68, incubation time 96 h, temperature 30 degrees C, and diammonium tartrate as a nitrogen source, maximum lipase titer of 1346.87 U/gds was achieved, 1.92-fold higher than lipase yield in basal medium. The optimally synthesized cell-free lipase extract was partially purified by ammonium sulfate fractionation and dialysis and used to degrade polyester vylon 200. The degradation profile revealed that the lipolytic enzyme demonstrated excellent hydrolytic potential resulting in a 76% weight of polyester vylon-200. Differential scanning calorimetry revealed a noticeable decrease in the glass transition temperature of PV-200 (from 72.6 degrees C to 63.9 degrees C). Scanning electron microscopy envisaged various micron-scale cracks and holes on the surface of film after enzymatic treatment. Likewise, significant weight loss of the PV-200 films was also corroborated by FTIR analysis. This study's findings illustrate lipase's potential as a green and ecofriendly biocatalyst for robust polyester degradation and depolymerization.
机译:在此,采用响应面法(RSM)优化生物工艺参数,以提高黑曲霉(Aspergillus melleus)胞外脂肪酶的产量,并评估其降解聚酯vylon-200的生物催化潜力。我们之前的报告表明,pH值、培养时间、温度和额外的氮源对脂肪酶的生物合成有显著影响。方差分析显示,基于中心复合设计建立的脂肪酶生产RSM模型显著(p<0.0001,R-2=0.9925)。在pH值为5.68、培养时间为96h、温度为30℃、酒石酸二铵为氮源的优化生物工艺条件下,脂肪酶的最高效价为1346.87U/gds,比基础培养基中的脂肪酶产量高1.92倍。通过硫酸铵分馏和透析对优化合成的无细胞脂肪酶提取物进行部分纯化,并用于降解聚酯vylon 200。降解曲线显示,脂肪酶表现出良好的水解潜力,导致聚酯vylon-200的重量为76%。差示扫描量热法显示PV-200的玻璃化转变温度显著降低(从72.6摄氏度降至63.9摄氏度)。扫描电子显微镜观察到酶处理后薄膜表面出现了各种微米级的裂纹和孔洞。同样,通过FTIR分析也证实了PV-200薄膜的显著重量损失。这项研究的发现表明脂肪酶作为一种绿色环保的生物催化剂具有强大的聚酯降解和解聚潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号