首页> 外文期刊>Catalysis Today >Interplay of ligand and strain effects in CO adsorption on bimetallic Cu/M (M = Ni, Ir, Pd, and Pt) catalysts from first-principles: Effect of different facets on catalysis
【24h】

Interplay of ligand and strain effects in CO adsorption on bimetallic Cu/M (M = Ni, Ir, Pd, and Pt) catalysts from first-principles: Effect of different facets on catalysis

机译:来自第一原理的双金属Cu / m(m = Ni,IR,Pd和Pt)催化剂对双金属Cu / m(M = Ni,IR,Pd和Pt)催化剂的相互作用:不同方面对催化的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Cu-based catalysts have been variously used in the water gas shift reaction (WGSR) and methanol synthesis, both of which use carbon monoxide as a common reactant. According to the Bell-Evans-Polanyi principle, CO ad-sorption energies (E-ads,E-CO) directly affect the activation energies for CO hydrogenation. Thus, the understanding of the relationship between E-ads,E-CO and the chemical properties of the catalytic surface is fundamental to catalyst design. In particular, recent studies have shown that effective catalysts can be developed by controlling the exposed facets or forming alloys with other transition metal to enhance the mechanical and electronic characteristics. In bimetallic catalysts, two types of chemical effects are known to determine the adsorption energies: one is the "strain" effect caused by lattice mismatch and the other is the "ligand" effect, generated by the change in orbital electrons. We conducted calculations on Cu/M(100), (111), and (211) surfaces (M = Ni, Ir, Pd and Pt) by using spin-polarized density functional theory (DFT) calculations to find the dominant factor, as well as trends, affecting CO adsorption. Our calculations suggest the ligand effect is the dominant contribution to E-ads,E-CO, regardless of the type of facets. We also determined that the ligand contribution is caused by the loss of electrons from the surface Cu atoms. As a result, a proportional correlation between ligand contribution and electron charge transfer was observed. On investigating the strain effect on the (111) facet, we found that the results are consistent with d-band theory, while the E-ads,E-CO on (100) and (211) facets showed the opposite trend.
机译:铜基催化剂被广泛应用于水煤气变换反应(WGSR)和甲醇合成,这两种反应都使用一氧化碳作为常见的反应物。根据Bell-Evans-Polanyi原理,CO和吸附能(E-ads,E-CO)直接影响CO加氢的活化能。因此,了解E-ads、E-CO和催化剂表面化学性质之间的关系是催化剂设计的基础。特别是,最近的研究表明,可以通过控制暴露的小面或与其他过渡金属形成合金来开发有效的催化剂,以增强机械和电子特性。在双金属催化剂中,确定吸附能的化学效应有两种:一种是晶格失配引起的“应变”效应,另一种是轨道电子变化产生的“配体”效应。我们通过使用自旋极化密度泛函理论(DFT)计算,对Cu/M(100)、(111)和(211)表面(M=Ni、Ir、Pd和Pt)进行了计算,以找到影响CO吸附的主导因素和趋势。我们的计算表明,配体效应是对电子广告、电子合作的主要贡献,无论是哪种类型的面。我们还确定配体的贡献是由表面铜原子的电子损失引起的。因此,观察到配体贡献和电子电荷转移之间的比例关系。在研究(111)面上的应变效应时,我们发现结果与d带理论一致,而(100)面和(211)面上的E-ads、E-CO则呈现相反的趋势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号