首页> 外文期刊>Biomechanics and modeling in mechanobiology >Investigating the reference domain influence in personalised models of cardiac mechanics Effect of unloaded geometry on cardiac biomechanics
【24h】

Investigating the reference domain influence in personalised models of cardiac mechanics Effect of unloaded geometry on cardiac biomechanics

机译:对心脏生物力学卸载几何的心脏力学效应的个性化模型中的参考域影响

获取原文
获取原文并翻译 | 示例
       

摘要

A major concern in personalised models of heart mechanics is the unknown zero-pressure domain, a prerequisite for accurately predicting cardiac biomechanics. As the reference configuration cannot be captured by clinical data, studies often employ in-vivo frames which are unlikely to correspond to unloaded geometries. Alternatively, zero-pressure domain is approximated through inverse methodologies, which, however, entail assumptions pertaining to boundary conditions and material parameters. Both approaches are likely to introduce biases in estimated biomechanical properties; nevertheless, quantification of these effects is unattainable without ground-truth data. In this work, we assess the unloaded state influence on model-derived biomechanics, by employing an in-silico modelling framework relying on experimental data on porcine hearts. In-vivo images are used for model personalisation, while in-situ experiments provide a reliable approximation of the reference domain, creating a unique opportunity for a validation study. Personalised whole-cycle cardiac models are developed which employ different reference domains (image-derived, inversely estimated) and are compared against ground-truth model outcomes. Simulations are conducted with varying boundary conditions, to investigate the effect of data-derived constraints on model accuracy. Attention is given to modelling the influence of the ribcage on the epicardium, due to its close proximity to the heart in the porcine anatomy. Our results find merit in both approaches for dealing with the unknown reference domain, but also demonstrate differences in estimated biomechanical quantities such as material parameters, strains and stresses. Notably, they highlight the importance of a boundary condition accounting for the constraining influence of the ribcage, in forward and inverse biomechanical models.
机译:心脏力学的个性化模型中的主要问题是未知的零压力域,准确预测心脏生物力学的先决条件。由于临床数据无法捕获参考配置,因此研究通常采用内部框架,这不太可能对应于卸载的几何形状。或者,零压力域通过逆方法近似,然而,需要与边界条件和材料参数有关的假设。两种方法可能会在估计的生物力学特性中引入偏见;然而,没有地理数据,这些效果的量化是无法实现的。在这项工作中,我们通过依赖于猪心脏的实验数据的三种模型框架来评估对模型衍生生物力学的卸载状态影响。体内图像用于模型个性化,而原位实验则提供参考域的可靠近似,为验证研究创造一个独特的机会。开发了个性化的全循环心脏模型,其采用不同的参考域(图像衍生的,终于估计),并与地面真理模型结果进行比较。使用不同的边界条件进行模拟,以研究数据导出的限制对模型精度的影响。由于其在猪解剖学中的心脏附近,因此给予了对表皮上的影响建模的注意力。我们的结果在处理未知参考领域的两种方法中发现了优异,而且还表明了估计的生物力学量如材料参数,菌株和应力的差异。值得注意的是,它们突出了边界条件核对核经镜的约束影响,前进和反向生物力学模型的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号