首页> 外文期刊>Biomechanics and modeling in mechanobiology >Quantify patient-specific coronary material property and its impact on stress/strain calculations using in vivo IVUS data and 3D FSI models: a pilot study
【24h】

Quantify patient-specific coronary material property and its impact on stress/strain calculations using in vivo IVUS data and 3D FSI models: a pilot study

机译:在体内IVUS数据和3D FSI模型中量化患者特异性冠状动脉性能及其对应力/应变计算的影响:试验研究

获取原文
获取原文并翻译 | 示例
       

摘要

Computational models have been used to calculate plaque stress and strain for plaque progression and rupture investigations. An intravascular ultrasound (IVUS)-based modeling approach is proposed to quantify in vivo vessel material properties for more accurate stress/strain calculations. In vivo Cine IVUS and VH-IVUS coronary plaque data were acquired from one patient with informed consent obtained. Cine IVUS data and 3D thin-slice models with axial stretch were used to determine patient-specific vessel material properties. Twenty full 3D fluid-structure interaction models with ex vivo and in vivo material properties and various axial and circumferential shrink combinations were constructed to investigate the material stiffness impact on stress/strain calculations. The approximate circumferential Young's modulus over stretch ratio interval [1.0, 1.1] for an ex vivo human plaque sample and two slices (S6 and S18) from our IVUS data were 1631, 641, and 346 kPa, respectively. Average lumen stress/strain values from models using ex vivo, S6 and S18 materials with 5 % axial shrink and proper circumferential shrink were 72.76, 81.37, 101.84 kPa and 0.0668, 0.1046, and 0.1489, respectively. The average cap strain values from S18 material models were 150-180 % higher than those from the ex vivo material models. The corresponding percentages for the average cap stress values were 50-75 %. Dropping axial and circumferential shrink consideration led to stress and strain over-estimations. In vivo vessel material properties may be considerably softer than those from ex vivo data. Material stiffness variations may cause 50-75 % stress and 150-180 % strain variations.
机译:计算模型已被用于计算斑块压力和牙菌斑进展和破裂调查的菌株。提出了血管内超声(IVUS)基础的建模方法,以在体内血管材料特性中量化以进行更准确的应力/应变计算。在体内CINE IVUS和VH-IVUS冠状动脉斑块数据被从一名患者获得,获得知情同意。用轴向拉伸的Cine IVUS数据和3D薄片模型用于确定特异性患者的容器材料。构建了具有离体和体内材料性能的20个全3D流体结构相互作用模型以及各种轴向和周向收缩组合,以研究材料刚度对应力/应变计算的影响。近似周向杨氏模量在远程人群数据的拉伸比间隔[1.0,1.1]和来自我们的IVUS数据的两片(S6和S6和S6)分别为1631,641和346kPa。使用5%轴向收缩和适当的圆周收缩的使用exvivo,S6和S18材料的模型的平均腔压力/应变值分别为72.76,81.37,101.84kPa和0.0668,0.1046和0.1489。来自S18材料模型的平均帽应变值高于来自例如离体材料模型的盖子应变值。平均帽应激值的相应百分比为50-75%。掉落轴向和周向收缩考虑因素导致应力和应变过度估计。在体内容器材料特性可能比来自例如离体数据的材料更柔软。材料刚度变化可能导致50-75%的应力和150-180%的应变变化。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号