...
首页> 外文期刊>Applied optics >Investigations on surface morphology and bandgap engineering of single crystal boron-doped silicon irradiated by a nanosecond laser
【24h】

Investigations on surface morphology and bandgap engineering of single crystal boron-doped silicon irradiated by a nanosecond laser

机译:纳秒激光照射单晶硼掺杂硅的表面形态和带隙工程的研究

获取原文
获取原文并翻译 | 示例
           

摘要

We irradiate the single crystal boron-doped silicon (Si) at various laser fluences with 100 laser shots in ambient air at room temperature using an Nd:YAG laser and investigate its surface morphology and optical properties. The optical microscopy gives evidence of the formation of a crater and reveals that the heat-affected zone and melted area are increased with increase in laser fluence from 1.1 to 15.4 J/cm(2). The micrographs obtained by scanning electron microscopy (SEM) show that the micro-and nano-structures such as microcracks, bubbles, nucleation sites, clusters, redeposited layered material, nanoparticles, and alike water droplet structures are formed on a laser-exposed Si surface. The optical profilometry of the irradiated Si further confirms the ablation and redeposition of the material and shows that the depth of the crater is increased from 12.1 to 15.2 mu m with increase in fluence from 1.1 to 15.4 J/cm(2). Raman spectroscopy of the samples shows that the irradiation generates anneal effects due to higher temperature, which increases the crystallinity of the Si. The ellipsometric analysis shows that the irradiation of Si with increasing laser fluence changes its optical constants (refractive index and extinction coefficient), which further influence its optical properties, e.g., reflectivity, absorptivity, and energy bandgap. The absorptivity of laser irradiated Si tends to increase with increasing laser fluence, and the energy bandgap is decreased accordingly due to increase in structural disorders. Our study shows that the controlled laser irradiation can tune the energy bandgap of exposed Si, and it makes the Si materials useful for the fabrication of optoelectronic devices such as solar cells, photovoltaic cells, and LEDs. (c) 2018 Optical Society of America
机译:在室温下使用ND:YAG激光,在室温下在室温下在各种激光器中测量单晶硼掺杂硅(Si),并使用ND:YAG激光,并研究其表面形态和光学性能。光学显微镜赋予陨石坑形成的证据,并揭示了热影响的区域和熔化区域随着激光量的增加而增加,从1.1〜15.4 J / cm(2)增加。通过扫描电子显微镜(SEM)获得的显微照片表明,在激光暴露的Si表面上形成微裂纹,气囊,核心,纳米粒子,簇,重新沉积的层状材料,纳米颗粒和相似的水滴结构。 。辐照的Si的光学轮廓测定方法进一步证实了材料的消融和重新沉积,并表明火山口的深度从12.1-15.2μm增加,增压从1.1到15.4 j / cm(2)增加。样品的拉曼光谱表明,由于较高的温度,照射产生退火效应,这增加了Si的结晶度。椭圆形分析表明,随着激光量的增加,Si的照射改变了其光学常数(折射率和消光系数),其进一步影响其光学性质,例如反射率,吸收性和能量带隙。激光照射的Si的吸收率随着激光量的增加而倾向于增加,并且由于结构障碍增加,能量带隙相应地降低。我们的研究表明,受控激光照射可以调节暴露的Si的能量带隙,并且它使Si材料用于制造诸如太阳能电池,光伏电池和LED的光电器件。 (c)2018年光学学会

著录项

  • 来源
    《Applied optics》 |2018年第6期|共9页
  • 作者单位

    Nanjing Univ Sci &

    Technol Sch Sci Nanjing 210094 Jiangsu Peoples R China;

    Nanjing Univ Sci &

    Technol Inst Optoelect &

    Nanomat MIIT Key Lab Adv Display Mat &

    Devices Coll Mat Sci &

    Engn Nanjing 210094 Jiangsu Peoples R China;

    Univ Punjab Ctr Excellence Solid State Phys Lahore 54590 Pakistan;

    Nanjing Univ Sci &

    Technol Sch Sci Nanjing 210094 Jiangsu Peoples R China;

    Nanjing Univ Sci &

    Technol Sch Sci Nanjing 210094 Jiangsu Peoples R China;

    Nanjing Univ Sci &

    Technol Sch Sci Nanjing 210094 Jiangsu Peoples R China;

    Nanjing Univ Sci &

    Technol Sch Sci Nanjing 210094 Jiangsu Peoples R China;

    Nanjing Univ Sci &

    Technol Sch Sci Nanjing 210094 Jiangsu Peoples R China;

    Nanjing Univ Sci &

    Technol Sch Sci Nanjing 210094 Jiangsu Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 应用;
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号