首页> 外文期刊>Applied optics >Calibration of a high spectral resolution lidar using a Michelson interferometer, with data examples from ORACLES
【24h】

Calibration of a high spectral resolution lidar using a Michelson interferometer, with data examples from ORACLES

机译:使用Michelson干涉仪校准高频谱分辨率LIDAR,具有来自oracles的数据示例

获取原文
获取原文并翻译 | 示例
           

摘要

The NASA Langley airborne second-generation High Spectral Resolution Lidar (HSRL-2) uses a density-tuned field-widened Michelson interferometer to implement the HSRL technique at 355 nm. The Michelson interferometer optically separates the received backscattered light between two channels, one of which is dominated by molecular backscattering, while the other contains most of the light backscattered by particles. This interferometer achieves high and stable contrast ratio, defined as the ratio of particulate backscatter signal received by the two channels. We show that a high and stable contrast ratio is critical for precise and accurate backscatter and extinction retrievals. Here, we present retrieval equations that take into account the incomplete separation of particulate and molecular backscatter in the measurement channels. We also show how the accuracy of the contrast ratio assessment propagates to error in the optical properties. For both backscattering and extinction, larger errors are produced by underestimates of the contrast ratio (compared to overestimates), more extreme aerosol loading, and-most critically-smaller true contrast ratios. We show example results from HSRL-2 aboard the NASA ER-2 aircraft from the 2016 ORACLES field campaign in the southeast Atlantic, off the coast of Africa, during the biomass burning season. We include a case study where smoke aerosol in two adjacent altitude layers showed opposite differences in extinction- and backscatter-related Angstrom exponents and a reversal of the lidar ratio spectral dependence, signatures which are shown to be consistent with a relatively modest difference in smoke particle size. (C) 2018 Optical Society of America
机译:NASA Langley Airborne第二代高光谱分辨率LIDAR(HSRL-2)使用密度调谐的现场加宽的迈克森干涉仪,以在355nm处实现HSRL技术。迈克尔逊干涉仪光学分离接收的反向散射光在两个通道之间,其中一个是由分子反向散射的主导,而另一个含有由颗粒反向散射的大部分光。这种干涉仪实现了高且稳定的对比度,定义为两个通道接收的颗粒背散射信号的比率。我们表明高稳定的对比度对于精确和准确的反向散射和消失检索至关重要。这里,我们呈现检索方程,考虑到测量通道中的颗粒和分子反向散射的不完全分离。我们还展示了对比度评估的准确性如何传播到光学性质中的错误。对于反向散射和灭绝,通过低估对比度(与高估),更极端气溶胶载荷,最重要的真正的对比度比来产生较大的误差。在生物法院燃烧季节,我们展示了从2016年东南大西洋的Oracles野战活动中乘坐NASR-2奥沙尔-2飞机的榜样。我们包括一个案例研究,其中两个相邻的高度层中的烟雾气溶胶显示出灭绝和后散射相关的埃斯特罗姆指数的相反差异以及激光雷达比谱依赖性的逆转,所示的签名与烟雾颗粒的相对适度的差异一致尺寸。 (c)2018年光学学会

著录项

  • 来源
    《Applied optics》 |2018年第21期|共15页
  • 作者单位

    NASA Langley Res Ctr Hampton VA 23681 USA;

    NASA Langley Res Ctr Hampton VA 23681 USA;

    NASA Langley Res Ctr Hampton VA 23681 USA;

    NASA Langley Res Ctr Hampton VA 23681 USA;

    NASA Langley Res Ctr Hampton VA 23681 USA;

    NASA Langley Res Ctr Hampton VA 23681 USA;

    NASA Langley Res Ctr Hampton VA 23681 USA;

    NASA Langley Res Ctr Hampton VA 23681 USA;

    NASA Langley Res Ctr Hampton VA 23681 USA;

    NASA Langley Res Ctr Hampton VA 23681 USA;

    Univ Calif Los Angeles Dept Atmospher &

    Ocean Sci Los Angeles CA 90095 USA;

    NASA Langley Res Ctr Hampton VA 23681 USA;

    Univ Hertfordshire Hatfield AL10 9AB Herts England;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 应用;
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号