...
首页> 外文期刊>Applied optics >Rigorous electromagnetic theory for waveguide evanescent field fluorescence microscopy
【24h】

Rigorous electromagnetic theory for waveguide evanescent field fluorescence microscopy

机译:波导浮雕场荧光显微镜的严格电磁理论

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Recently, waveguide evanescent field fluorescence (WEFF) microscopy was introduced and used to image and analyze cell-substrate contacts. Here, we establish a comprehensive electromagnetic theory in a seven-layer structure as a model for a typical waveguide-cell structure appropriate for WEFF microscopy and apply it to quantify cell-waveguide separation distances. First, electromagnetic fields at the various layers of a model waveguide-cell system are derived. Then, we obtain the dispersion relation or characteristic equation for TE modes with a stratified media as a cover. Waveguides supporting a defined number of modes are theoretically designed for conventional, reverse, and symmetric waveguide structures and then various waveguide parameters and the penetration depths of the evanescent fields are obtained. We show that the penetration depth of the evanescent field in a three-layer waveguide-cell structure is always lower than that of a seven-layer structure. Using the derived electromagnetic fields, the background and the excited fluorescence in the waveguide-cell gap, filled with water-soluble fluorophores, are analytically formulated. The effect of the waveguide structures on the fluorescence and the background are investigated for various modes. Numerical results are presented for the background and the stimulated fluorescence as functions of the water gap width for various waveguide structures, which can be used to find the water gap width. The results indicate that the background and excited fluorescence increase by increasing the penetration depth of the evanescent field. In addition, we show that for various guided modes of a conventional waveguide, the electric fields in the cell membrane and the cytoplasm are evanescent and they do not depend on the waveguide structure and the mode number. However, for the reverse symmetry and symmetric waveguide structures, the waves are sinusoidal in the cell membrane and the cytoplasm for the highest-order modes. (C) 2018 Optical Society of America
机译:最近,引入了波导蒸发场荧光(WEFF)显微镜,并用于图像和分析细胞基板触点。这里,我们在七层结构中建立综合电磁理论作为适合于WEFF显微镜的典型波导细胞结构的模型,并将其应用于量化细胞 - 波导分离距离。首先,推导出模型波导细胞系统的各个层的电磁场。然后,我们获得具有分层介质作为盖子的TE模式的色散关系或特征方程。支持限定数量模式的波导是为常规,反向和对称波导结构设计的,然后获得各种波导参数和渐逝场的穿透深度。我们表明,三层波导细胞结构中的渐逝场的渗透深度总是低于七层结构的渐变深度。使用衍生的电磁场,在分析与填充有水溶性荧光团的波导细胞间隙中的背景和激发荧光。对各种模式研究了波导结构对荧光和背景的影响。作为各种波导结构的水间隙宽度的函数呈现的数值结果,以及刺激的荧光,其可用于找到水间隙宽度。结果表明,通过增加渐逝场的渗透深度来增加背景和激发荧光。另外,我们表明,对于传统波导的各种导向模式,细胞膜中的电场和细胞质是渐逝的,并且它们不依赖于波导结构和模式数。然而,对于反向对称和对称的波导结构,波浪是细胞膜中的正弦状,并且为最高阶模式的细胞质。 (c)2018年光学学会

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号