...
首页> 外文期刊>Applied optics >Using design of experiment for parameter optimization on smart headlamp optics design
【24h】

Using design of experiment for parameter optimization on smart headlamp optics design

机译:使用实验设计参数优化对智能头灯光学设计

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

This research focuses on the design of the optical microstructure, and the design of four kinds of light distribution for vehicles' passing beam and driving beam optical structures under the regulation ECE R123. The results show that the passing beam achieves the target light distribution with multiple light patterns superimposed by reflectors, and can meet the four segment light types under the regulations: Class C, Class V, Class E, and Class W. With the structural design method of the reflector, a cutoff line is formed under the structure without a visor to reduce the energy waste caused by the shielding structure, so that the maximum luminosity of the passing beam under the road section can reach 75,980.7 cd and the simulated maximum photometric value can reach 69,705.9 cd under Class W. The driving beam uses the total internal reflection (TIR) lens design to find the optimal 36 degrees angle of the lens to effectively achieve the straightening and brightness enhancement of the light, and then uses the response surface methodology to optimize the optical divergence of the parameters of the microlenticular lens structure on the TIR lens to adjust the width and flatness of the light type. Among them, the radius of curvature, the thickness of the lens, and the length of the single lens are selected as the factors. Using the experimental design method of the reaction surface, the optimal solution of the driving beam design is found. The optimal solution is combined into a radius of curvature of 14.99 mm in the X direction and 25.22 mm in the Y direction, the overall thickness is 1.5 mm, and the length of a single curved surface is 2.43. Each factor is within the limit, and the maximum brightness in the center is 213,866 cd. (C) 2019 Optical Society of America
机译:该研究侧重于光学微观结构的设计,以及用于在调节ECE R123下的车辆传球和驱动光束光学结构的四种光分布的设计。结果表明,通过光束通过反射器叠加的多个光图案实现了目标光分布,并且可以满足规则下的四个段光类型:C类,V,e和C.具有结构设计方法在反射器中,在没有遮阳板的情况下形成截止线,以减少由屏蔽结构引起的能量浪费,使得路段下的通过光束的最大亮度可以达到75,980.7cd和模拟的最大光度值可以达到69,705.9级CD。驱动梁使用全内反射(TIR)镜头设计,找到镜头的最佳36度角度,有效地达到光的矫直和亮度增强,然后使用响应表面方法优化TIR镜头上微型晶状体结构参数的光发散,以调节轻型的宽度和平坦度。其中,选择曲率半径,透镜的厚度和单透镜的长度作为因素。使用反应表面的实验设计方法,找到了驱动梁设计的最佳解决方案。最佳溶液在X方向上组合成14.99mm的曲率半径,在Y方向上为25.22mm,整体厚度为1.5mm,单个曲面的长度为2.43。每个因素都在限制范围内,中心的最大亮度为213,866cd。 (c)2019年光学学会

著录项

  • 来源
    《Applied optics》 |2019年第28期|共23页
  • 作者单位

    Tunghai Univ Dept Ind Engn &

    Enterprise Informat Taichung 407 Taiwan;

    Natl Chung Hsing Univ Grad Inst Precis Engn Taichung 402 Taiwan;

    Tunghai Univ Dept Ind Engn &

    Enterprise Informat Taichung 407 Taiwan;

    Tunghai Univ Dept Ind Engn &

    Enterprise Informat Taichung 407 Taiwan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 应用;
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号