首页> 外文期刊>Applied optics >Three-dimensional reconstruction method based on bionic active sensing in precision assembly
【24h】

Three-dimensional reconstruction method based on bionic active sensing in precision assembly

机译:基于精密组装仿生活性感测的三维重建方法

获取原文
获取原文并翻译 | 示例
           

摘要

With the prevailing application of new materials and the higher requirements for the quality and efficiency of production in the equipment manufacturing industry, traditional assembly methods can hardly meet the needs of large-scale production, especially in the field of high-precision assembly. Robot assembly guided by visual perception has become the key of the research in the field of engineering technology. It requires higher accuracy of robot visual perception and the control over force, position and so on. However, in 3C assembly, most products are made of transparent materials such as glass. Because of the transparency and specular reflection of the surface, 3D reconstruction of transparent objects is a very difficult problem in computer vision, in that the traditional visual perception methods could not be accurate enough. The present research proposes a bionic active sensing algorithm for 3D perception and reconstruction and realizes high-precision 3D by applying the registration algorithm. The purpose is to solve the problems existing in the traditional visual perception method, such as difficulties in achieving active sensing, low accuracy of point clouds registration, and complex computation. The results of the experiments show that the present method is efficient and accurate in 3D reconstruction. It reduces the planar reconstruction error to 0.064 mm and the surface reconstruction error to 0.177 mm. (C) 2020 Optical Society of America
机译:随着新材料的普遍存在应用和设备制造业生产质量和效率的更高要求,传统的装配方法可以很难满足大规模生产的需求,特别是在高精度组装领域。通过视觉感知引导的机器人组件已成为工程技术领域的研究的关键。它需要更高的机器人视觉感知和控制力,位置等更高的准确性。然而,在3C组装中,大多数产品由透明材料如玻璃制成。由于表面的透明度和镜面反射,透明对象的三维重建是计算机视觉中的一个非常困难的问题,因为传统的视觉感知方法不能足够准确。本研究提出了一种用于通过应用登记算法实现3D感知和重构的仿生活性传感算法,并实现高精度3D。目的是解决传统的视觉感知方法存在的问题,例如实现主动感测的困难,点云注册的低精度和复杂的计算。实验结果表明,本方法在三维重建中是有效准确的。它将平面重建误差减少到0.064毫米,表面重建误差为0.177 mm。 (c)2020美国光学学会

著录项

  • 来源
    《Applied optics》 |2020年第3期|共11页
  • 作者

  • 作者单位
  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 应用;
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号