首页> 外文期刊>Applied optics >Switchable broadband metamaterial absorber/reflector based on vanadium dioxide rings
【24h】

Switchable broadband metamaterial absorber/reflector based on vanadium dioxide rings

机译:基于钒二氧化物环的可切换宽带超材料吸收器/反射器

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

A new broadband tunable metamaterial absorber based on different radii of vanadium dioxide (VO2) rings loaded on the dielectric layer is designed. According to the insulator-to-metal phase transition characteristics of VO2 under thermal excitation, the dynamic adjustment of the absorption by the external temperature is achieved. The simulation results demonstrate that when VO2 is in its metal phase at high temperature, an absorption greater than 90% in the bandwidth range of 2.64-7 THz can be obtained and its relative bandwidth is reached to 90.5%. However, the absorption rate in the same frequency range is always lower than 2.3% when VO2 is in the insulator phase at low temperature, which means that the absorber can be used as a perfect reflector. The maximum tunable range of the proposed absorber can be realized from below 2.3% to nearly 100%. We further analyze and discuss the equivalent impedance and electric field distribution of the absorber and clarify the adjustment mechanism of the absorption performance of the VO2 ring. In addition, a multireflection interference theory is also investigated to quantitatively explain the physical absorption mechanism. Such a tunable broadband absorber based on temperature control has great potential to be applied to sensors, thermophotovoltaics, and wireless communication. (C) 2020 Optical Society of America
机译:设计了一种基于介电层上的二氧化钒(VO2)环的不同半径的新型宽带调谐超材料吸收器。根据VO2在热激励下的绝缘体 - 金属相变特性,实现了外部温度的吸收的动态调节。模拟结果表明,当VO2在高温下的金属相时,可以获得大于2.64-7 THz的带宽范围内的吸收,并且其相对带宽达到90.5%。然而,当VO2处于低温下的绝缘阶段,相同频率范围内的吸收率始终低于2.3%,这意味着吸收器可以用作完美的反射器。所提出的吸收器的最大可调谐范围可以从低于2.3%到近100%实现。我们进一步分析和讨论吸收体的等效阻抗和电场分布,并阐明了VO2环的吸收性能的调节机理。此外,还研究了多雾化干扰理论以定量解释物理吸收机制。基于温度控制的这种可调宽带吸收器具有适用于传感器,蒸发器和无线通信的潜力。 (c)2020美国光学学会

著录项

  • 来源
    《Applied optics》 |2020年第27期|共7页
  • 作者单位

    Taiyuan Univ Technol Dept Phys &

    Optoelectrons Taiyuan 030024 Peoples R China;

    Taiyuan Univ Technol Dept Phys &

    Optoelectrons Taiyuan 030024 Peoples R China;

    Taiyuan Univ Technol Dept Phys &

    Optoelectrons Taiyuan 030024 Peoples R China;

    Taiyuan Univ Technol Dept Phys &

    Optoelectrons Taiyuan 030024 Peoples R China;

    Taiyuan Univ Technol Dept Phys &

    Optoelectrons Taiyuan 030024 Peoples R China;

    Taiyuan Univ Technol Dept Phys &

    Optoelectrons Taiyuan 030024 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 应用;
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号