首页> 外文期刊>American journal of transplantation: official journal of the American Society of Transplantation and the American Society of Transplant Surgeons >Optimization and Critical Evaluation of Decellularization Strategies to Develop Renal Extracellular Matrix Scaffolds as Biological Templates for Organ Engineering and Transplantation
【24h】

Optimization and Critical Evaluation of Decellularization Strategies to Develop Renal Extracellular Matrix Scaffolds as Biological Templates for Organ Engineering and Transplantation

机译:开发用于细胞工程和移植的生物模板的肾细胞外基质支架的脱细胞策略的优化和关键评估

获取原文
获取原文并翻译 | 示例
           

摘要

The ability to generate patient-specific cells through induced pluripotent stem cell (iPSC) technology has encouraged development of three-dimensional extracellular matrix (ECM) scaffolds as bioactive substrates for cell differentiation with the long-range goal of bioengineering organs for transplantation. Perfusion decellularization uses the vasculature to remove resident cells, leaving an intact ECM template wherein new cells grow; however, a rigorous evaluative framework assessing ECM structural and biochemical quality is lacking. To address this, we developed histologic scoring systems to quantify fundamental characteristics of decellularized rodent kidneys: ECM structure (tubules, vessels, glomeruli) and cell removal. We also assessed growth factor retentionindicating matrix biofunctionality. These scoring systems evaluated three strategies developed to decellularize kidneys (1% Triton X-100, 1% Triton X-100/0.1% sodium dodecyl sulfate (SDS) and 0.02% Trypsin-0.05% EGTA/1% Triton X-100). Triton and Triton/SDS preserved renal microarchitecture and retained matrix-bound basic fibroblast growth factor and vascular endothelial growth factor. Trypsin caused structural deterioration and growth factor loss. Triton/SDS-decellularized scaffolds maintained 3h of leak-free blood flow in a rodent transplantation model and supported repopulation with human iPSC-derived endothelial cells and tubular epithelial cells ex vivo. Taken together, we identify an optimal Triton/SDS-based decellularization strategy that produces a biomatrix that may ultimately serve as a rodent model for kidney bioengineering.
机译:通过诱导多能干细胞(iPSC)技术产生患者特异性细胞的能力鼓励了三维细胞外基质(ECM)支架的开发,作为细胞分化的生物活性底物,这是生物工程器官移植的长期目标。灌注脱细胞利用脉管系统去除常驻细胞,留下完整的ECM模板,新细胞在其中生长。但是,缺乏评估ECM结构和生化质量的严格评估框架。为了解决这个问题,我们开发了组织学评分系统以量化脱细胞啮齿动物肾脏的基本特征:ECM结构(肾小管,血管,肾小球)和细胞去除。我们还评估了指示基质生物功能的生长因子保留率。这些评分系统评估了三种使肾脏脱细胞的策略(1%Triton X-100、1%Triton X-100 / 0.1%十二烷基硫酸钠(SDS)和0.02%胰蛋白酶-0.05%EGTA / 1%Triton X-100)。 Triton和Triton / SDS保留了肾脏的微结构,保留了基质结合的基本成纤维细胞生长因子和血管内皮生长因子。胰蛋白酶引起结构恶化和生长因子损失。 Triton / SDS脱细胞支架在啮齿动物移植模型中维持3h的无渗漏血流,并支持人iPSC衍生的内皮细胞和肾小管上皮细胞的再增殖。综上所述,我们确定了一种基于Triton / SDS的最佳脱细胞策略,该策略可产生生物基质,最终可作为肾脏生物工程的啮齿动物模型。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号