首页> 外文期刊>American Journal of Physiology >Skeletal muscle regulates extracellular potassium.
【24h】

Skeletal muscle regulates extracellular potassium.

机译:骨骼肌调节细胞外钾。

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Maintaining extracellular fluid (ECF) K(+) concentration ([K(+)]) within a narrow range is accomplished by the concerted responses of the kidney, which matches K(+) excretion to K(+) intake, and skeletal muscle, the main intracellular fluid (ICF) store of K(+), which can rapidly buffer ECF [K(+)]. In both systems, homologous P-type ATPase isoforms are key effectors of this homeostasis. During dietary K(+) deprivation, these P-type ATPases are regulated in opposite directions: increased abundance of the H,K-ATPase "colonic" isoform in the renal collecting duct drives active K(+) conservation while decreased abundance of the plasma membrane Na,K-ATPase alpha(2)-isoform leads to the specific shift of K(+) from muscle ICF to ECF. The skeletal muscle response is isoform and muscle specific: alpha(2) and beta(2), not alpha(1) and beta(1), levels are depressed, and fast glycolytic muscles lose >90% alpha(2), whereas slow oxidative muscles lose ~50%; however, both muscle types have the same fall in cellular [K(+)]. To understand the physiological impact, we developed the "K(+) clamp" to assess insulin-stimulated cellular K(+) uptake in vivo in the conscious rat by measuring the exogenous K(+) infusion rate needed to maintain constant plasma [K(+)] during insulin infusion. Using the K(+) clamp, we established that K(+) deprivation leads to near-complete insulin resistance of cellular K(+) uptake and that this insulin resistance can occur before any decrease in plasma [K(+)] or muscle Na(+) pump expression. These studies establish the advantage of combining molecular analyses of P-type ATPase expression with in vivo analyses of cellular K(+) uptake and excretion to determine mechanisms in models of disrupted K(+) homeostasis.
机译:通过肾脏的协调反应,将细胞外液(ECF)的K(+)浓度([K(+)])维持在一个狭窄的范围内,这与肾脏的K(+)排泄与K(+)的摄入量以及骨骼肌相匹配。 ,K(+)的主要细胞内液(ICF)存储区,可以快速缓冲ECF [K(+)]。在两个系统中,同源的P型ATP酶同工型都是这种稳态的关键效应器。在饮食中的K(+)剥夺过程中,这些P型ATPase的调控方向相反:肾脏收集管中H,K-ATPase“ colonic”亚型的丰度增加,导致主动K(+)保守,而血浆丰度降低膜Na,K-ATPase alpha(2)-异构体导致K(+)从肌肉ICF到ECF的特定移位。骨骼肌反应是同种型和特定于肌肉的:alpha(2)和beta(2),而不是alpha(1)和beta(1),水平降低,快速的糖酵解肌肉损失> 90%的alpha(2),而慢速氧化性肌肉损失约50%;但是,两种肌肉的细胞[K(+)]下降幅度相同。为了了解生理影响,我们开发了“ K(+)钳”以通过测量维持恒定血浆所需的外源性K(+)输注速率来评估有意识大鼠体内胰岛素刺激的细胞K(+)摄取。 (+)]在胰岛素输注期间。使用K(+)钳,我们确定K(+)剥夺导致细胞K(+)摄取的胰岛素抵抗几乎完全,并且这种胰岛素抵抗可以在血浆[K(+)]或肌肉减少之前发生Na(+)泵表达式。这些研究确立了将P型ATP酶表达的分子分析与细胞对K(+)摄取和排泄的体内分析相结合的优势,从而确定了破坏K(+)稳态的模型的机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号