...
首页> 外文期刊>物理探查 >3-Dimensional data interpretation of resistivity method by numerical coordinate transformation
【24h】

3-Dimensional data interpretation of resistivity method by numerical coordinate transformation

机译:用数值坐标变换的三维数据解释电阻率法

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Previous studies on the theory of optimal computational space indicated that the forward problem for the resistivity method could be replaced by the problem of numerical coordinate transformation. This conclusion implies that an efficient algorithm could be developed as long as the problems of the numerical coordinate transformation were solved. Clearly, the coordinate transformation should be reciprocated between the physical space and the computational space. To avoid using of the interpolation method, two direction transformation equations are applied. However, the introduced transformation equations cannot be easily solved either in the physical space or in the optimal computational space because the grid systems in both spaces are non-uniform. In fact, the grid coordinates are the unknowns to be solved. These facts suggest that, to describe our transformation equations, an "executing coordinate system" is needed. In this study, a third coordinate space, the intermediate space, is introduced. In this new space, the grid system holds a one-to-one coordinate transformation relation to those in the physical and computational spaces, and remains as a uniform grid system. Solving all the transformation equations in this space provides the coefficient matrices with the regular structure regardless of the topographies and resistivity distributions. In this algorithm, the initial grid in the computational space is assigned uniform or whatever expected and the initial grid in the physical space is created by the hyperbolic transform system according to the prescript surface grid in the physical space and the whole grid system in the computational space. To refine the grid systems in both spaces, elliptical systems are applied. Several numerical tests by this algorithm are carried out to show its application to the forward problems.
机译:以前关于最佳计算空间理论的研究表明,可以通过数值坐标变换的问题取代电阻率方法的前向问题。该结论意味着可以开发有效的算法,只要解决了数值坐标变换的问题。显然,坐标转换应在物理空间和计算空间之间往复运动。为避免使用插值方法,应用两个方向变换方程。然而,引入的变换方程不能在物理空间中或在最佳计算空间中容易地解决,因为两个空间中的网格系统都是不均匀的。事实上,网格坐标是要解决的未知数。这些事实表明,为了描述我们的转换方程,需要“执行坐标系”。在本研究中,引入了第三个坐标空间,中间空间。在这个新的空间中,网格系统与物理和计算空间中的那些保持一对一的坐标变换关系,并且保持为统一网格系统。求解该空间中的所有变换方程提供了与常规结构的系数矩阵,无论拓扑和电阻率分布如何。在该算法中,计算空间中的初始网格被分配统一或任何预期的预期,并且物理空间中的初始网格由单曲面变换系统根据物理空间中的规定曲面网格和整个网格系统中的计算中的计算空间。为了在两个空间中优化网格系统,应用椭圆体系。执行该算法的几个数值测试以显示其在前向问题上的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号