首页> 外文期刊>Journal of Fluids Engineering: Transactions of the ASME >Analytical Upper Limit of Drag Reduction With Polymer Additives in Turbulent Pipe Flow
【24h】

Analytical Upper Limit of Drag Reduction With Polymer Additives in Turbulent Pipe Flow

机译:湍流管流动中聚合物添加剂减阻减阻的分析上限

获取原文
获取原文并翻译 | 示例
       

摘要

Flow drag reduction induced by chemical additives, more commonly called drag-reducing agents (DRAs), has been studied for many years, but few studies can manifest the mechanism of this phenomenon. In this paper, a new mathematical model is proposed to predict the upper limit of drag reduction with polymer DRAs in a turbulent pipe flow. The model is based on the classic finitely extensible nonlinear elastic-Peterlin (FENE-P) theory, with the assumption that all vortex structures disappear in the turbulent flow, i.e., complete laminarization is achieved. With this model, the maximum drag reduction by a DRA at a given concentration can be predicted directly with several parameters, i.e., bulk velocity of the fluid, pipe size, and relaxation time of the DRA. Besides, this model indicates that both viscosity and elasticity contribute to the drag reduction: before a critical concentration, both viscosity and elasticity affect the drag reduction positively; after this critical concentration, elasticity still works as before but viscosity affects drag reduction negatively. This study also proposes a correlation format between drag reduction measured in a rheometer and that estimated in a pipeline. This provides a convenient way of pipeline drag reduction estimation with viscosity and modulus of the fluids that can be easily measured in a rheometer.
机译:已经研究了由化学添加剂引起的流量减阻,更常见的是叫减压剂(DRA)多年来,但很少的研究可以表现出这种现象的机制。在本文中,提出了一种新的数学模型,以预测湍流管道中的聚合物dras阻力降低的上限。该模型基于经典的有限可扩展的非线性弹性钉林(FENE-P)理论,假设所有涡流结构都在湍流中消失,即实现了完全层析。利用该模型,可以直接用若干参数,即流体,管尺寸和DRA放松时间的若干参数来预测给定浓度下的DRA的最大阻力。此外,该模型表明,粘度和弹性均导致减压:在临界浓度之前,粘度和弹性都会积极影响减阻;在这种临界浓度之后,弹性仍然在以前工作,但粘度会影响减少减少。本研究还提出了在流变仪中测量的阻力度之间的相关形式,并且在管道中估计。这提供了一种方便的管道阻力减少估计,其具有可以在流变仪中容易地测量的流体的粘度和模量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号