首页> 外文期刊>Journal of Engineering Mechanics >Effects of Triad Interactions on Wave Attenuation by Vegetation
【24h】

Effects of Triad Interactions on Wave Attenuation by Vegetation

机译:三合会相互作用对植被波衰减的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Wave attenuation in vegetated shallow water is mainly attributed to actual drag-induced dissipation and near-resonant triad interactions. The latter is neglected in existing theoretical models for vegetation-induced dissipation. In this study, a set of evolution equations describing the spatial evolution of three near-resonant wave components was extended to include vegetation effects. The contributions of triad interactions to the attenuation of individual harmonics were investigated. The authors found that neglecting the energy cycling caused by triad interactions gives an underestimation of damping rates. The triad interactions have greater effects on the attenuation of higher harmonics. A fully nonlinear, fully dispersive wave model was used to explore the effects of triad interactions on spectral dissipation of random waves. After isolating the energy transfers caused by triad interactions and the actual drag-induced dissipation, the authors found that triad interactions transfer energy to higher harmonics, which experience greater damping. Due to the energy transfers from spectral peak (f(p)) to high frequencies (2f(p)), the energy losses in f(p) and 2f(p) are overestimated and underestimated, respectively, by existing models based on linear wave theory. (C) 2017 American Society of Civil Engineers.
机译:植被浅水中的波浪衰减主要归因于实际阻力诱导的耗散和近谐振三合会相互作用。后者在现有的植被诱导的耗散的理论模型中被忽略了。在该研究中,一组描述三个近共振波组分的空间演化的演化方程被延长以包括植被效应。调查了三合会相互作用对个人谐波衰减的贡献。作者发现,忽略了三合会相互作用引起的能量循环,这会低估阻尼率。三合会互动对更高谐波的衰减具有更大的影响。完全非线性的完全分散波模型用于探讨三合会相互作用对随机波的光谱耗散的影响。在分离由三合会相互作用和实际阻力造成造成的能量转移后,作者发现三合会相互作用将能量转移到更高的谐波,这会越来越大的阻尼。由于从光谱峰值(F(P))转移到高频率(2F(P)),F(P)和2F(P)中的能量损失分别由基于线性的现有模型分别高估和低估波理论。 (c)2017美国土木工程师协会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号