...
首页> 外文期刊>Journal of Computational Chemistry: Organic, Inorganic, Physical, Biological >Conserving the Linear Momentum in Stochastic Dynamics: Dissipative Particle Dynamics as a General Strategy to Achieve Local Thermostatization in Molecular Dynamics Simulations
【24h】

Conserving the Linear Momentum in Stochastic Dynamics: Dissipative Particle Dynamics as a General Strategy to Achieve Local Thermostatization in Molecular Dynamics Simulations

机译:节省随机动力学的线性动量:耗散粒子动力学作为实现分子动力学模拟中局部恒温的一般策略

获取原文
获取原文并翻译 | 示例

摘要

Stochastic dynamics is a widely employed strategy to achieve local thermostatization in molecular dynamics simulation studies; however, it suffers from an inherent violation of momentum conservation. Although this short-coming has little impact on structural and short-time dynamic properties, it can be shown that dynamics in the long-time limit such as diffusion is strongly dependent on the respective thermostat setting. Application of the methodically similar dissipative particle dynamics (DPD) provides a simple, effective strategy to ensure the advantages of local, stochastic thermostatization while at the same time the linear momentum of the system remains conserved. In this work, the key parameters to employ the DPD thermostats in the framework of periodic boundary conditions are investigated, in particular the dependence of the system properties on the size of the DPD-region as well as the treatment of forces near the cutoff. Structural and dynamical data for light and heavy water as well as a Lennard-Jones fluid have been compared to simulations executed via stochastic dynamics as well as via use of the widely employed NoseHoover chain and Berendsen thermostats. It is demonstrated that a small size of the DPD region is sufficient to achieve local thermalization, while at the same time artifacts in the self-diffusion characteristic for stochastic dynamics are eliminated. (C) 2016 Wiley Periodicals, Inc.
机译:随机动力学是一种广泛采用的策略,以实现分子动力学模拟研究中的局部恒温;但是,它受到势地保护的固有侵犯。虽然这种短暂的影响对结构和短时动态特性没有什么影响,但是可以表明,长时间诸如扩散中的动态强烈地取决于相应的恒温器设置。在有条不紊地类似的耗散粒子动力学(DPD)的应用提供了一种简单,有效的策略,以确保局部,随机恒温的优点,同时系统的线性动量保持保守。在这项工作中,研究了在周期边界条件框架中使用DPD恒温器的关键参数,特别是系统性质对DPD区域的尺寸以及截止附近的力的依赖性。与通过随机动力学执行的模拟以及通过广泛采用的鼻酚链和Berendsen恒温器执行的模拟进行了光和重水以及Lennard-Jones流体的结构和动态数据。结果证明,小尺寸的DPD区域足以实现局部热化,而在消除了随机动力学的自扩散特性中的同时伪影被消除。 (c)2016 Wiley期刊,Inc。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号