...
首页> 外文期刊>Tissue engineering, Part A >Bone Tissue Engineering with Multilayered Scaffolds-Part II: Combining Vascularization with Bone Formation in Critical-Sized Bone Defect
【24h】

Bone Tissue Engineering with Multilayered Scaffolds-Part II: Combining Vascularization with Bone Formation in Critical-Sized Bone Defect

机译:骨组织工程与多层支架 - 第二部分:在临界大小骨缺损中与骨形成组合血管形成

获取原文
获取原文并翻译 | 示例
           

摘要

Our previous in vivo study showed that multilayered scaffolds made of an angiogenic layer embedded between an osteogenic layer and an osteoconductive layer, with layer thickness in the 100-400m range, resulted in through-the-thickness vascularization of the construct even in the absence of exogenous endothelial cells. The angiogenic layer was a collagen-fibronectin gel, and the osteogenic layer was made from nanofibrous polycaprolactone while the osteoconductive layer was made either from microporous hydroxyapatite or microfibrous polycaprolactone. In this follow-up study, we implanted these acellular and cellular multilayered constructs in critical-sized rat calvarial defects and evaluated their vascularization and bone formation potential. Vascularization and bone formation at the defect were evaluated and quantified using microcomputed tomography (microCT) followed by perfusion of the animals with the radio opaque contrast agent, MICROFIL. The extent of bony bridging and union within the critical-sized defect was evaluated using a previously established scoring system from the microCT data set. Similarly the new bone formation in the defect was quantified from the microCT data set as previously reported. Histological evaluation at 4 and 12 weeks validated the microCT findings. Our experimental results showed that acellular multilayered scaffolds with microscale-thick nanofibers and porous ceramic discs with angiogenic zone at their interface can regenerate functional vasculature and bone similar to that of cellular constructs in critical-sized calvarial defects. This result suggests that suitably bioengineered acellular multilayered constructs can be an improved and more translational approach in functional in vivo bone regeneration.
机译:我们以前的体内研究表明,由嵌入在骨质发生层和骨导电层之间的血管生成层制成的多层支架,其中100-400m范围内的层厚度,即使在没有的情况下也导致构建体的厚度血管化外源内皮细胞。血管生成层是胶原 - 纤连蛋白凝胶,并且骨质发生层由纳米纤维聚己内酯制成,而骨导电层是从微孔羟基磷灰石或微纤维聚己内酯制成的。在这种后续研究中,我们植入这些细胞和细胞多层构建体在临界大小的大鼠颅骨缺陷中,并评估其血管化和骨形成潜力。使用微型断层扫描(MicroCT)评估和定量缺损的血管化和骨形成,然后用无线电不透明造影剂,微杂物灌注动物。使用先前建立了来自MicroCT数据集的评分系统,评估了临界缺陷内的骨桥和联盟的程度。类似地,根据先前报道的MicroCT数据集中量化缺陷中的新骨形成。 4和12周的组织学评估验证了MicroCT结果。我们的实验结果表明,具有微观厚纳米纤维的细胞多层支架和其界面处的血管生成区的多孔陶瓷盘可以再生功能性脉管系统和骨骼构建中的临界大小缺陷中的细胞构建体。该结果表明,适当的生物工程的无细胞多层构建体可以是体内骨再生功能的改善和更加平移的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号