...
首页> 外文期刊>Physics of particles and nuclei >The Proton Form Factor Measurements at Jefferson Lab, Past and Future
【24h】

The Proton Form Factor Measurements at Jefferson Lab, Past and Future

机译:杰斐逊实验室,过去和未来的质子形状因子测量

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Use of the double-polarization technique to obtain the elastic nucleon form factors has resulted in a dramatic improvement of the quality of two of the four nucleon electromagnetic form factors, G_(Ep) and G_(En). It has also changed our understanding of the proton structure, having resulted in a distinctly different Q~2- dependence for both G_(Ep) and G_(Mp), contradicting the prevailing wisdom of the 1990's based on cross section measurements, namely that G_(Ep) and G_(Mp) obey a "scaling" relation μG_(Ep) ~ G_(Mp). A related consequence of the faster decrease of G_(Ep) revealed by the Jefferson Lab (JLab) polarization results was the disappearance of the early scaling F_2/F_1 ~ 1/Q~2 predicted by perturbative QCD. In three experiments, G_(Ep)(1), G_(Ep)(2) and G_(Ep)(3), in Halls A and C at JLab, the ratio of the proton's electromagnetic elastic form factors, G_(Ep)/G_(Mp), was measured up to four momentum transfer Q~2 of 8.5 GeV~2 with high precision, using the recoil polarization technique. The initial discovery that the proton form factor ratio measured in these three experiments decreases approximately linearly with four-momentum transfer, Q~2, for values above ~ 1 GeV~2, was modified by the G_(Ep)(3) results, which suggests a slowing down of this decrease. There is an approved experiment, G_(Ep)(5), to continue these measurements to 15 GeV~2. A dedicated experimental setup, the super bigbite spectrometer (SBS), will be built for this purpose. It will be equipped with a new focal plane polarimeter to measure the polarization of the recoil protons. In this presentation, I will review the status of the proton elastic electromagnetic form factors, mention succinctly a number of theoretical approaches to describe results and show some features required for the future G_(Ep)(5) experiment.
机译:使用双极化技术以获得弹性核心形状因子导致了急剧提高了四种核仁电磁形式因子,G_(EP)和G_(EN)的质量。它还改变了对质子结构的理解,导致了一个明显不同的Q〜2-依赖于G_(EP)和G_(MP),基于横截面测量的截至1990年的普遍智慧,即G_ (EP)和G_(MP)遵守“缩放”关系μG_(EP)〜G_(MP)。杰斐逊实验室(JLAB)极化结果揭示的G_(EP)更快地降低的相关结果是通过扰动QCD预测的早期缩放F_2 / F_1〜1 / Q〜2的消失。在三个实验中,G_(EP)(1),G_(EP)(2)和G_(EP)(3),在JLAB的大厅A和C中,质子的电磁弹性形状因子的比例G_(EP) / G_(MP),测量高达4.5 GEV〜2的四个动量转移Q〜2,具有高精度,采用RECOIL偏振技术。在这三个实验中测量的质子形状因子比的初始发现大致线性地减少了四动态转移,对于高于〜1 gev〜2的值,通过G_(EP)(3)结果来修饰,结果建议减速这一减少。有一个批准的实验,G_(EP)(5),继续这些测量到15 GEV〜2。专用的实验设置,为此目的,将建立超大大谱仪(SBS)。它将配备新的焦平面偏振仪以测量反冲质子的偏振。在本演示文稿中,我将审查质子弹性电磁形式因素的状态,简化了一些理论方法来描述结果,并显示未来G_(EP)(5)实验所需的一些功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号