...
首页> 外文期刊>Soil Biology & Biochemistry >High-resolution elemental mapping of the root-rhizosphere-soil continuum using laser-induced breakdown spectroscopy (LIBS)
【24h】

High-resolution elemental mapping of the root-rhizosphere-soil continuum using laser-induced breakdown spectroscopy (LIBS)

机译:使用激光诱导的击穿光谱(LIBS)的根根根际 - 土壤连续体的高分辨率元素映射

获取原文
获取原文并翻译 | 示例
           

摘要

Understanding the complex chemical nature of root-soil interactions is essential for building the next generation of sustainable agricultural systems and facilitating long-term environmental remediation strategies. Techniques currently suited to investigate spatial controls on nutrient exchange in plant rhizospheres, however, are hindered by limitations in throughput, cost, analytical scope, and sample preparation needs. We describe here a method for rapid, high-resolution (similar to 100 mu m), multi-element imaging of both organic content and inorganic constituents in root-rhizosphere-soil systems using laser-induced breakdown spectroscopy (LIBS). A switchgrass assemblage (Panicum virgaturn) was grown in compact rhizotrons containing a sandy loam Alfisol from the Kellogg Biological Station (KBS), Michigan, USA. Root-soil samples were extracted using custom plastic coring devices for live root sampling and a modified drill press for sectioning frozen stabilized soil. A 266 nm, Nd:YAG laser was rastered over similar to 10 mm(2) sample surfaces and broadband spectra from single-pulse ablations were collected and mapped to discrete XY spatial coordinates for simultaneous imaging of 17 macronutrients, micronutrients and matrix elements. In order to rapidly process LIES raster data and investigate chemical trends in the rhizosphere, an open-source Python module was developed, in which we used a novel calibration-free masking algorithm (based on principal components analysis (PCA) of normalized spectral intensities) to discriminate soil mineral grains, root fragments, and associated rhizosphere regions. We observed fine-scale chemical gradients within only a millimeter of switchgrass roots, consistent with rhizodeposition of organic compounds and proximal uptake of inorganic nutrients. Detection of trace element and carbon accumulations with diagnostic spectral signatures in the rhizosphere suggested the presence of residues (detritusphere) that could serve as sites of preferential microbial accumulation. These results highlight potential applications of LIBS within the growing field of spatially-resolved plant-soil analysis and extend its versatile imaging capabilities to the complex root-rhizosphere-soil network.
机译:了解根土相互作用的复杂化学性质对于建立下一代可持续农业系统并促进长期环境修复战略至关重要。然而,目前适合于研究植物根际营养交换的空间控制的技术因吞吐量,成本,分析范围和样品准备需求的限制而受阻。我们在此描述一种使用激光诱导的击穿光谱(Libs)的快速,高分辨率(类似于100μm),有机含量和无机成分的多元素成像的方法。在含有来自美国密歇根密歇根密歇根州的凯利格生物站(KBS)的含沙壤土alfisol的紧凑型rhizotrons中生长了交换僵尸组合(Panicum Virgaturn)。用定制塑料取芯装置提取根土样品,用于活根采样,改进的钻头压机,用于切割冷冻稳定的土壤。将266nm,Nd:YAG激光器在类似于10mm(2)(2)个(2)个样品表面上,并收集来自单脉冲消融的宽带光谱,并映射到离散的XY空间坐标,用于同时成像17个MACRORERICE,微量营养素和矩阵元件。为了快速处理LiS光栅数据并调查根际的化学趋势,开发了一个开源的Python模块,我们使用了一种新的无校准掩蔽算法(基于标准化谱强度的主成分分析(PCA))鉴别土壤矿物颗粒,根部片段和相关根际区域。我们观察到仅在一毫米的切换根中的细尺寸化学梯度,与有机化合物的无根石沉积和无机营养素的近侧吸收一致。检测无根际具有诊断光谱特征的痕量元素和碳累积,提出了残留物(Detritusphere)的存在,其可以作为优先微生物积累的位点。这些结果突出了Libs在空间分辨植物 - 土壤分析中不断发展领域的潜在应用,并将其通用的成像能力扩展到复杂的根根根际 - 土壤网络中。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号