首页> 外文期刊>Geometry & Topology >Boundaries and automorphisms of hierarchically hyperbolic spaces
【24h】

Boundaries and automorphisms of hierarchically hyperbolic spaces

机译:分层双曲线空间的边界和自同一性

获取原文
       

摘要

Hierarchically hyperbolic spaces provide a common framework for studying mapping class groups of finite-type surfaces, Teichm"uller space, right-angled Artin groups, and many other cubical groups. Given such a space $mathcal X$, we build a bordification of $mathcal X$ compatible with its hierarchically hyperbolic structure. If $mathcal X$ is proper, eg a hierarchically hyperbolic group such as the mapping class group, we get a compactification of $mathcal X$; we also prove that our construction generalizes the Gromov boundary of a hyperbolic space. In our first main set of applications, we introduce a notion of geometrical finiteness for hierarchically hyperbolic subgroups of hierarchically hyperbolic groups in terms of boundary embeddings. As primary examples of geometrical finiteness, we prove that the natural inclusions of finitely generated Veech groups and the Leininger--Reid combination subgroups extend to continuous embeddings of their Gromov boundaries into the boundary of the mapping class group, both of which fail to happen with the Thurston compactification of Teichm"uller space. Our second main set of applications are dynamical and structural, built upon our classification of automorphisms of hierarchically hyperbolic spaces and analysis of how the various types of automorphisms act on the boundary. We prove a generalization of the Handel--Mosher ``omnibus subgroup theorem'' for mapping class groups to all hierarchically hyperbolic groups, obtain a new proof of the Caprace--Sageev rank-rigidity theorem for many $operatorname{CAT}(0)$ cube complexes, and identify the boundary of a hierarchically hyperbolic group as its Poisson boundary; these results rely on a theorem detecting emph{irreducible axial} elements of a group acting on a hierarchically hyperbolic space (which generalize pseudo-Anosov elements of the mapping class group and rank-one isometries of a cube complex not virtually stabilizing a hyperplane).
机译:分层双曲线空间为学习映射级别的有限型曲面组,Teichm “Uller空间,右角度的Artin组以及许多其他立方体组的常见框架提供了一个常见的框架。给出了这种空间$ Mathcal x $,我们建立了一个趋势$ mathcal x $兼容其分层双曲结构。如果$ mathcal x $恰当,例如映射类组等分层双曲群,我们得到$ mathcal x $的压缩;我们也证明了我们的建设概括了双曲空间的Gromov边界。在我们的第一组主要应用程序中,我们在边界嵌入方面介绍了分层双曲群的分层双曲族的分层双曲亚组的几何灵活性的概念。作为几何优势的主要例子,我们证明了有限生成的延伸臂组和leiner - 里德组合子组的自然含量延伸到他们的Gromov边界的连续嵌入到界限映射类组,两者都无法发生Teichm “uller空间的Thurston压缩。我们的第二组主要应用是动态和结构,建立在我们的分层双曲空间的自同一性分类上,并分析了各种类型的自型自动作用在边界上的作用。我们证明了亨德尔 - Mosher```hombus子组定理的概括为映射类组到所有分层双曲群体,获取许多$ operatorname {cat}的Caprace - Sageev等级定理的新证明( 0)$ CUBE复合体,并识别分层双曲线组的边界作为其泊松边界;这些结果依赖于定理检测 emph {不可缩小的组中作用在分层双曲线空间的组件(绘制级别组的伪Anosov元素和立方体复合物的级别不正实地稳定超平面) 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号