...
首页> 外文期刊>European journal of pharmaceutics and biopharmaceutics: official journal of Arbeitsgemeinschaft fuer Pharmazeutische Verfahrenstechnik e.V >Freeze-drying simulation framework coupling product attributes and equipment capability: Toward accelerating process by equipment modifications
【24h】

Freeze-drying simulation framework coupling product attributes and equipment capability: Toward accelerating process by equipment modifications

机译:冷冻干燥仿真框架耦合产品属性和设备能力:通过设备修改加速过程

获取原文
获取原文并翻译 | 示例

摘要

A physics-based model for the sublimation-transport-condensation processes occurring in pharmaceutical freeze-drying by coupling product attributes and equipment capabilities into a unified simulation framework is presented. The system-level model is used to determine the effect of operating conditions such as shelf temperature, chamber pressure, and the load size on occurrence of choking for a production-scale dryer. Several data sets corresponding to production-scale runs with a load from 120 to 485 L have been compared with simulations. A subset of data is used for calibration, whereas another data set corresponding to a load of 150 L is used for model validation. The model predictions for both the onset and extent of choking as well as for the measured product temperature agree well with the production-scale measurements. Additionally, we study the effect of resistance to vapor transport presented by the duct with a valve and a baffle in the production-scale freeze-dryer. Computation Fluid Dynamics (CFD) techniques augmented with a system-level unsteady heat and mass transfer model allow to predict dynamic process conditions taking into consideration specific dryer design. CFD modeling of flow structure in the duct presented here for a production-scale freeze-dryer quantifies the benefit of reducing the obstruction to the flow through several design modifications. It is found that the use of a combined valve-baffle system can increase vapor flow rate by a factor of 2.2. Moreover, minor design changes such as moving the baffle downstream by about 10 cm can increase the flow rate by 54%. The proposed design changes can increase drying rates, improve efficiency, and reduce cycle times due to fewer obstructions in the vapor flow path. The comprehensive simulation framework combining the system-level model and the detailed CFD computations can provide a process analytical tool for more efficient and robust freeze-drying of bio-pharmaceuticals.
机译:提出了通过将产品属性和设备能力耦合到统一的仿真框架中,在药物冷冻干燥中发生的基于物理基础型模型。系统级模型用于确定诸如货架温度,室压和负载尺寸的操作条件的效果,以对生产级干燥器的窒息。将若干数据集对应于具有从120至485L的负载的生产级运行的数据集进行了比较。数据子集用于校准,而与150L的负载相对应的另一个数据集用于模型验证。窒息的起点和程度的模型预测以及测量的产品温度与生产尺度测量相同。另外,我们研究了管道和生产级别冷冻干燥器中的管道和挡板提出的管道抗性的抗性的影响。计算流体动力学(CFD)技术通过系统级不稳定的热量和传质模型增强,允许考虑特定的干燥机设计来预测动态工艺条件。在此用于生产级冻干机的管道中的流动结构的CFD建模量量化了通过几种设计修改减少流量的障碍的益处。发现使用组合的阀挡板系统可以将蒸汽流速提高2.2倍。此外,较小的设计变化,例如将挡板下游移动约10厘米,可以将流速提高54%。所提出的设计变化可以提高干燥率,提高效率,并且由于蒸汽流动路径的障碍物较少而降低循环时间。结合系统级模型的综合仿真框架和详细的CFD计算可以提供一种过程分析工具,用于生物药物的更高效和坚固的冷冻干燥。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号