首页> 外文期刊>Intelligence: A Multidisciplinary Journal >Crashworthiness optimization of VRB thin-walled structures under manufacturing constraints by the eHCA-VRB algorithm
【24h】

Crashworthiness optimization of VRB thin-walled structures under manufacturing constraints by the eHCA-VRB algorithm

机译:EHCA-VRB算法制造限制下VRB薄壁结构的耐火性优化

获取原文
获取原文并翻译 | 示例
           

摘要

Variable-thickness rolled blanks (VRBs) represent an important approach for constructing lightweight structures. However, the optimization of the crashworthiness and thickness distribution of VRB thin-walled structures under manufacturing constraints is a nonlinear dynamic-response structural-optimization problem that has a large number of design variables. To tackle this problem, this paper has extended and improved the hybrid cellular automaton for thin-walled structures (HCATWS) algorithm, and has proposed an extended hybrid cellular automaton for VRB thin-walled structures (eHCA-VRB) algorithm. This algorithm consists of an outer loop and an inner loop. The outer loop performs crash simulation analysis to define an appropriate target mass for the inner loop, whereas the inner loop adjusts cell thicknesses according to the internal energy density (IED) of the current cell and its neighboring cells so that the IED in the design domain becomes evenly distributed. A one-dimensional CA model is defined along with the rolling direction based on the thickness distribution of VRB thin-walled structures. Furthermore, the eHCA-VRB algorithm also generates a mapping relationship between the one-dimensional CA model and the FE model. To optimize the thickness distribution of VRB thin-walled structures under manufacturing constraints, our method uses cell thickness as a design variable and incorporates the constraints of the VRB rolling process in the cell thickness update rules. To verify the convergence and efficiency of the eHCA-VRB algorithm, VRB top-hat thin-walled structures are optimized for crashworthiness with/or without manufacturing constraints (M.C.), respectively. The results show that the eHCA-VRB algorithm can be used to efficiently solve the optimization problems of crashworthiness and the thickness distribution of VRB thin-walled structures under manufacturing constraints. (C) 2019 Elsevier Inc. All rights reserved.
机译:可变厚度轧制坯料(VRB)代表了一种构造轻质结构的重要方法。然而,在制造限制下的VRB薄壁结构的崩溃和厚度分布的优化是具有大量设计变量的非线性动态响应结构优化问题。为了解决这个问题,本文已经扩展和改进了薄壁结构(HCATWS)算法的混合蜂窝自动机,并提出了一种用于VRB薄壁结构(EHCA-VRB)算法的扩展混合蜂窝自动机。该算法包括外环和内环。外部循环执行崩溃仿真分析以定义内部环路的适当目标质量,而内环根据当前电池的内部能量密度(IED)和其相邻单元的内部能量密度(IED)调整电池厚度,以使设计域中的IED变得均匀分布。基于VRB薄壁结构的厚度分布,与轧制方向相同限定一维CA型号。此外,EHCA-VRB算法还生成一维CA模型和FE模型之间的映射关系。为了在制造限制下优化VRB薄壁结构的厚度分布,我们的方法使用单元厚度作为设计变量,并结合了在单元厚度更新规则中的VRB滚动过程的约束。为了验证EHCA-VRB算法的收敛性和效率,VRB顶帽薄壁结构分别针对/或不具有制造限制(M.C.)的崩溃性而优化。结果表明,EHCA-VRB算法可用于有效解决制造限制下VRB薄壁结构的持续持续性和厚度分布的优化问题。 (c)2019 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号