首页> 外文期刊>Atmospheric chemistry and physics >Sunset-sunrise difference in solar occultation ozone measurements (SAGE II, HALOE, and ACE-FTS) and its relationship to tidal vertical winds
【24h】

Sunset-sunrise difference in solar occultation ozone measurements (SAGE II, HALOE, and ACE-FTS) and its relationship to tidal vertical winds

机译:日落日出太阳覆膜臭氧测量的日出差异(Sage II,Haloe和Ace-FTS)及其与潮汐垂直风的关系

获取原文
获取原文并翻译 | 示例
       

摘要

This paper contains a comprehensive investigation of the sunset-sunrise difference (SSD, i.e., the sunsetminus- sunrise value) of the ozone mixing ratio in the latitude range of 10 degrees S-10 degrees N. SSD values were determined from solar occultation measurements based on data obtained from the Stratospheric Aerosol and Gas Experiment (SAGE) II, the Halogen Occultation Experiment (HALOE), and the Atmospheric Chemistry Experiment-Fourier transform spectrometer (ACE-FTS). The SSD was negative at altitudes of 20-30 km (-0.1 ppmv at 25 km) and positive at 30-50 km (+0.2 ppmv at 40-45 km) for HALOE and ACE-FTS data. SAGE II data also showed a qualitatively similar result, although the SSD in the upper stratosphere was 2 times larger than those derived from the other data sets. On the basis of an analysis of data from the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) and a nudged chemical transport model (the specified dynamics version of the Whole Atmosphere Community Climate Model: SD-WACCM), we conclude that the SSD can be explained by diurnal variations in the ozone concentration, particularly those caused by vertical transport by the atmospheric tidal winds. All data sets showed significant seasonal variations in the SSD; the SSD in the upper stratosphere is greatest from December through February, while that in the lower stratosphere reaches a maximum twice: during the periods March-April and September-October. Based on an analysis of SD-WACCM results, we found that these seasonal variations follow those associated with the tidal vertical winds.
机译:本文含有对日落日出差异(SSD,即SearingMinus-Sunrise值)的全面调查,臭氧混合比在10度S-10度N.SSD值范围内的纬度范围内。根据太阳掩星测量确定了SSD值从平流层气溶胶和气体实验(SAGE)II,卤素掩星实验(HALOE)和大气化学实验 - 傅立叶变换光谱仪(ACE-FTS)上获得的数据。 SSD在20-30公里(25公里的-0.1ppmv)的海拔地区负阴性,为Haloe和Ace-FTS数据阳性为30-50公里(+0.2ppmv)。 SAGE II数据还显示出质量相似的结果,尽管上层体中的SSD比来自其他数据集的SSD大2倍。基于超导亚峰值波肢排放仪(微笑)和闪亮的化学传输模型的数据分析(整个大气群落环境的指定动态版本:SD-WACCM),我们得出结论是SSD可以通过臭氧浓度的昼夜变化来解释,特别是由大气潮气垂直传输引起的那些。所有数据集在SSD中显示出显着的季节性变化;上层平流层的SSD从12月到2月最大,而较低的平流层最多达到两次:在3月至4月和9月至10月期间。基于对SD-WACCM结果的分析,我们发现这些季节性变化遵循与潮汐垂直风相关的季节变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号