首页> 外文期刊>Autonomic neuroscience: basic & clinical >Total alkalinity minus dissolved inorganic carbon as a proxy for deciphering ocean acidification mechanisms
【24h】

Total alkalinity minus dissolved inorganic carbon as a proxy for deciphering ocean acidification mechanisms

机译:总碱度减去溶解无机碳作为用于破译海洋酸化机制的代理

获取原文
获取原文并翻译 | 示例
           

摘要

Ocean acidification (OA) defined as the decline of ocean pH and calcium carbonate saturation state (Omega) as a result of ocean uptake of CO2 from the atmosphere may have considerable negative impacts on global marine organisms and may substantially modify ocean biogeochemistry. However, as changes of pH and Omega are not conservative or linear with respect to ocean physical processes (e.g., mixing, temperature and pressure changes), the influences of anthropogenic CO2 uptake and ocean biogeochemical processes on OA rates cannot be easily identified. Here, we examine whether a composite property [TA-DIG] or the difference between total alkalinity (TA) and dissolved inorganic carbon (DIC), which is conservative to ocean mixing and is not sensitive to temperature and pressure changes, can be used for measuring OA rates and deciphering the underlying OA mechanisms in the global ocean as it in surface waters of several regional oceans. Based on Global Ocean Data Analysis Project Version 2 (GLODAPv2), we demonstrate using this property for measuring OA rates can be applied on a global ocean scale, except at low salinity e.g., < 20 and when [TA-DIG] is < -50 mu mol kg(-1), where the relationships of [TA-DIG] with pH and/or Omega are nonlinear. However, there are almost no limitations when using this property for deciphering the underlying OA mechanisms since the change of [TA-DIG] with time is relatively small on OA timescales of decades or more. Using [TA-DIG], we can readily quantify the influences from freshwater inputs and upwelling on OA rates based on a two end-member mixing model. More importantly, through the Redfield ratio and apparent oxygen utilization, we can directly link biological influences to OA rates and conveniently quantify the biological modulation on OA rates. Therefore, we argue that using [TA-DIG] as a proxy for OA would provide a simple but powerful way of deciphering acidification mechanisms and predicting future development of acidification.
机译:由于来自大气中二氧化碳的海洋摄取而定义为海洋pH和碳酸钙饱和状态(Omega)的海洋酸化(OA)可能对全球海洋生物产生相当大的产生负面影响,并且可能会显着修改海洋生物地球化学。然而,由于对海洋物理过程的pH和Omega的变化不是保守或线性的,因为混合,温度和压力变化),因此不能容易地识别出人为CO2摄取和海洋生物地球化学过程对OA率的影响。在此,我们检查复合性质[TA-DIG]或总碱度(TA)与溶解的无机碳(DIC)之间的差异,这些属性是用于海洋混合的保守且对温度和压力变化不敏感,但可用于测量OA率并将全球海洋中的底层OA机制解读为几个区域海洋的地表水域。基于全球海洋数据分析项目版本2(Glodapv2),我们使用此属性向量测量OA速率,除了低盐度外,例如,<20以及[TA-DIG]为<-50时mu mol kg(-1),其中[ta-dig]与pH和/或ω的关系是非线性的。然而,在使用此属性时几乎没有限制以解密底层的OA机制,因为在几十年或更长时间的OA时间尺度上相对较小的时间相对较小。使用[TA-DIG],我们可以容易地量化淡水输入的影响以及基于两个终端构件混合模型对OA速率的影响。更重要的是,通过Redfield比和表观氧利用,我们可以直接将生物学影响直接与OA率的生物影响,方便地量化OA率的生物调制。因此,我们认为使用[TA-DIG]作为OA的代理将提供一种简单但强大的解密酸化机制的方式,并预测未来酸化的发展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号