...
首页> 外文期刊>Acta biomaterialia >Enhanced oxygen permeability in membrane-bottomed concave microwells for the formation of pancreatic islet spheroids
【24h】

Enhanced oxygen permeability in membrane-bottomed concave microwells for the formation of pancreatic islet spheroids

机译:提高膜底凹微孔中的氧气渗透性,用于形成胰岛球状球体

获取原文
获取原文并翻译 | 示例

摘要

Graphical abstract Display Omitted Abstract Oxygen availability is a critical factor in regulating cell viability that ultimately contributes to the normal morphogenesis and functionality of human tissues. Among various cell culture platforms, construction of 3D multicellular spheroids based on microwell arrays has been extensively applied to reconstitute in vitro human tissue models due to its precise control of tissue culture conditions as well as simple fabrication processes. However, an adequate supply of oxygen into the spheroidal cellular aggregation still remains one of the main challenges to producing healthy in vitro spheroidal tissue models. Here, we present a novel design for controlling the oxygen distribution in concave microwell arrays. We show that oxygen permeability into the microwell is tightly regulated by varying the poly-dimethylsiloxane (PDMS) bottom thickness of the concave microwells. Moreover, we validate the enhanced performance of the engineered microwell arrays by culturing non-proliferated primary rat pancreatic islet spheroids on varying bottom thickness from 10?μm to 1050?μm. Morphological and functional analyses performed on the pancreatic islet spheroids grown for 14?days prove the long-term stability, enhanced viability, and increased hormone secretion under the sufficient oxygen delivery conditions. We expect our results could provide knowledge on oxygen distribution in 3-dimensional spheroidal cell structures and critical design concept for tissue engineering applications. Statement of Significance In this study, we present a noble design to control the oxygen distribution in concave microwell arrays for the formation of highly functional pancreatic islet spheroids by engineering the bottom of the microwells. Our new platform significantly enhanced oxygen permeability that turned out to improve cell viability and spheroidal functionality compared to the conventional thick-bottomed 3-D culture system. Therefore, we believe that this could be a promising medical biotechnology platform to further develop high-throughput tissue screening system as well as in vivo -mimicking customised 3-D tissue culture systems.
机译:图形摘要显示省略摘要氧气可用性是调节细胞活力的关键因素,最终导致人体组织的正常形态发生和功能性。在各种细胞培养平台中,基于微孔阵列的3D多细胞球体的构造已经广泛地应用于重构体外人体组织模型,因为其精确控制组织培养条件以及简单的制造工艺。然而,足够的氧气供应到球形细胞聚集仍然是在体外球体组织模型中产生健康的主要挑战之一。在这里,我们提出了一种用于控制凹形微孔阵列中的氧气分布的新颖设计。我们表明,通过改变凹微孔的聚二甲基硅氧烷(PDMS)底部厚度来紧密调节微孔中的氧气渗透性。此外,我们通过在不同的底部厚度为10Ωμm至1050Ωμm上培养未增殖的初级大鼠胰岛胰岛球体来验证工程化微孔阵列的增强性能。在生长的胰岛球状体上进行的形态学和功能分析14℃,证明了在足够的氧递送条件下的长期稳定性,增强的活力和增加的激素分泌。我们预计我们的结果可以为3维球芯结构和组织工程应用的关键设计理念提供了关于氧气分布的知识。本研究中的重要性陈述,我们提出了一种惰性设计,以通过工程微孔的底部来控制凹微型阵列中的氧气分布。我们的新平台显着提高了与传统的厚底3-D培养系统相比改善细胞活力和球状功能的氧气渗透性。因此,我们认为这可能是一个有前途的医学生物技术平台,以进一步开发高通量组织筛选系统以及体内定制的3-D组织培养系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号