【24h】

$${mathbb R}^5$$ R 5 ]]>

机译: $$ { mathbb r} ^ 5 $$ r 5 ]]>

获取原文
获取原文并翻译 | 示例
       

摘要

Let $$Q_n=[0,1]^n$$ Q n = [ 0 , 1 ] n be the unit cube in $${mathbb R}^n$$ R n , $$n in {mathbb N}$$ n ∈ N . For a nondegenerate simplex $$Ssubset {mathbb R}^n$$ S ? R n , consider the value $$xi (S)=min {sigma >0: Q_nsubset sigma S}$$ ξ ( S ) = min { σ > 0 : Q n ? σ S } . Here $$sigma S$$ σ S is a homothetic image of S with homothety center at the center of gravity of S and coefficient of homothety $$sigma $$ σ . Let us introduce the value $$xi _n=min {xi (S): Ssubset Q_n}$$ ξ n = min { ξ ( S ) : S ? Q n } . We call S a perfect simplex if $$Ssubset Q_n$$ S ? Q n and $$Q_n$$ Q n is inscribed into the simplex $$xi _n S$$ ξ n S . It is known that such simplices exist for $$n=1$$ n = 1 and $$n=3$$ n = 3 . The exact values of $$xi _n$$ ξ n are known for $$n=2$$ n = 2 and in the case when there exists an Hadamard matrix of order $$n+1$$ n + 1 ; in the latter situation $$xi _n=n$$ ξ n = n . In this paper we show that $$xi _5=5$$ ξ 5 = 5 and $$xi _9=9$$ ξ 9 = 9 . We also describe infinite families of simplices $$Ssubset Q_n$$ S ? Q n such that $$xi (S)=xi _n$$ ξ ( S ) = ξ n for $$n=5,7,9$$ n = 5 , 7 , 9 . The main result of the paper is the confirmation of the existence of perfect simplices in $${mathbb R}^5$$ R 5 .
机译:让q_n = [0,1] ^ n $$ q n = [0,1] n为$$ { mathbb r} ^ n $$ r n,$$ n in { mathbb n} $ n∈n。对于一个nondegenerate simplex $$ s subset { mathbb r} ^ n $$ s? r n,考虑值$$ xi(s)= min { sigma> 0:q_n subset sigma s } $$ξ(s)= min {σ> 0:q n? ΣS}。在这里$$ sigma s $$σs是S的同性恋形象,在Homentety Cents的成员,以及Homothety系数$$ Sigma $$σ。让我们介绍价值$$ xi _n = min { xi(s):s subset q_n } $$ξn = min {ξ(s):s? q n}。如果$$ s subset q_n $$ s,我们会调用一个完美的单纯x? q n和$$ q_n $$ q n被铭刻成单纯x $$ xi _n s $$ξn s。众所周知,如此简单的价值,$$ n = 1 $$ n = 1和$$ n = 3 $$ n = 3。 $$ xi _n $$ n = 2的确切值是已知的,并且在存在哈马德矩阵$$ n + 1 $$ n + 1的情况下在后一种情况下$$ xi _n = n $$ξn = n。在本文中,我们显示$$ xi_5 = 5 $$ξ5= 5和$$ xi _9 = 9 $$ξ9= 9。我们还描述了Infinite族的简单族$$ s subset q_n $$ s? Q n这样$$ xi(s)= xi _n $$ξ(s)=ξn为$$ n = 5,7,9 $$ n = 5,7,9。本文的主要结果是在$$ { MATHBB R}中确认完美简单的存在^ 5 $$ r 5。

著录项

相似文献

  • 外文文献