...
首页> 外文期刊>電子情報通信学会技術研究報告. パターン認識·メディア理解. Pattern Recognition and Media Understanding >Quick searching of long audio signals using global pruning: accelerating time-series active search
【24h】

Quick searching of long audio signals using global pruning: accelerating time-series active search

机译:使用全局修剪快速搜索长音频信号:加速时间序列活动搜索

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Previously, we proposed a histogram-based quick signal search method called Time-Series Active Search (TAS). TAS is a method of searching through long audio or video recordings for a specified segment, based on signal similarity. TAS is fast; it can search through a 24-hour recording in 1 second after a query-independent preprocessing. However, an even faster method is required when we consider huge amount of audio archives, for example a month's worth of recordings. Thus, we propose a preprocessing method that significantly accelerates TAS. The core part of this method comprises a global histogram clustering of long signal and a pruning scheme using those clusters. Tests using broadcast recording indicate that the proposed algorithm achieves the search speed approximately 3 to 30 times faster than TAS. The exactly same search results as TAS are theoretically guaranteed.
机译:以前,我们提出了一种基于直方图的快速信号搜索方法,称为时间序列活动搜索(TAS)。 TAS是一种根据信号相似性搜索指定段的长音频或视频录制的方法。 TAS很快; 在查询独立于独立的预处理之后,它可以在1秒内完成24小时录制。 但是,当我们考虑大量的音频档案时,需要更快的方法,例如一个月的录音。 因此,我们提出了一种预处理方法,可显着加速TAS。 该方法的核心部分包括使用这些簇的长信号和修剪方案的全局直方图聚类。 使用广播录制的测试表明所提出的算法比TAS快约3到30倍的搜索速度。 理论上保证了与TAS完全相同的搜索结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号