【24h】

Cell biology of molybdenum

机译:钼的细胞生物学

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The transition element molybdenum (Mo) is of essential importance for (nearly) all biological systems as it is required by enzymes catalyzing diverse key reactions in the global carbon, sulfur and nitrogen metabolism. The metal itself is biologically inactive unless it is complexed by a special cofactor. With the exception of bacterial nitrogenase, where Mo is a constituent of the FeMo-cofactor, Mo is bound to a pterin, thus forming the molybdenum cofactor (Moco) which is the active compound at the catalytic site of all other Mo-enzymes. In eukaryotes, the most prominent Mo-enzymes are (1) sulfite oxidase, which catalyzes the final step in the degradation of sulfur-containing amino acids and is involved in detoxifying excess sulfite, (2) xanthine dehydrogenase, which is involved in purine catabolism and reactive oxygen production, (3) aldehyde oxidase, which oxidizes a variety of aldehydes and is essential for the biosynthesis of the phytohormone abscisic acid, and in autotrophic organisms also (4) nitrate reductase, which catalyzes the key step in inorganic nitrogen assimilation. All Mo-enzymes, except plant sulfite oxidase, need at least one more redox active center, many of them involving iron in electron transfer. The biosynthesis of Moco involves the complex interaction of six proteins and is a process of four steps, which also includes iron as well as copper in an indespensable way. Moco as released after synthesis is likely to be distributed to the apoproteins of Mo-enzymes by putative Moco-carrier proteins. Xanthine dehydrogenase and aldehyde oxidase, but not sulfite oxidase and nitrate reductase, require the postranslational sulfuration of their Mo-site for becoming active. This final maturation step is catalyzed by a Moco-sulfurase enzyme, which mobilizes sulfur from L-cysteine in a pyridoxal phosphate-dependent manner as typical for cysteine desulfurases. (c) 2006 Elsevier B.V. All rights reserved.
机译:过渡元素钼(Mo)对于(几乎)所有生物系统都是至关重要的,因为催化全球碳,硫和氮代谢中各种关键反应的酶需要它。除非被特殊的辅因子复合,否则金属本身是生物惰性的。除细菌固氮酶(其中Mo是FeMo辅因子的组成部分)外,Mo与蝶呤结合,从而在所有其他Mo酶的催化位点形成了作为活性化合物的钼辅因子(Moco)。在真核生物中,最突出的Mo酶是(1)亚硫酸盐氧化酶,它催化含硫氨基酸降解的最后一步,并涉及对过量的亚硫酸盐进行解毒;(2)黄嘌呤脱氢酶,其与嘌呤分解代谢有关。 (3)醛氧化酶,氧化多种醛类,是植物激素脱落酸生物合成所必需的;在自养生物中,(4)硝酸还原酶,催化无机氮同化的关键步骤。除植物亚硫酸盐氧化酶外,所有钼酶都至少需要一个以上的氧化还原活性中心,其中许多涉及电子转移中的铁。 Moco的生物合成涉及六种蛋白质的复杂相互作用,是一个四个步骤的过程,它还以必不可少的方式包括铁和铜。合成后释放的Moco可能通过推定的Moco载体蛋白分布到Mo酶的脱辅基蛋白上。黄嘌呤脱氢酶和醛氧化酶,而不是亚硫酸盐氧化酶和硝酸盐还原酶,需要对其Mo位进行翻译后硫化才能发挥活性。最终的成熟步骤由Moco-硫酸酯酶催化,该酶以半胱氨酸脱硫酶的典型方式,以吡ido醛磷酸酯依赖性方式从L-半胱氨酸中移动硫。 (c)2006 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号