...
首页> 外文期刊>Journal of Chemical Education >Bringing Real-World Energy-Storage Research into a Second-Year Physical-Chemistry Lab Using a MnO2-Based Supercapacitor
【24h】

Bringing Real-World Energy-Storage Research into a Second-Year Physical-Chemistry Lab Using a MnO2-Based Supercapacitor

机译:使用基于MNO2的超级电容器将现实世界的储能研究纳入第二年的物理化学实验室

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

As the need for alternative energy becomes increasingly important, energy research and related industries are rapidly expanding. This lab incorporates current energy-storage research into a second-year lab that instills real-world, industry-relevant knowledge and skills while teaching and reinforcing physical-chemistry concepts. A manganese oxide electrode, aqueous-Na2SO4-electrolyte super capacitor system is used because it has no air or water sensitivity, unlike most battery technologies, so it is easy to implement in an undergraduate-lab setting. Manganese oxide is an increasingly popular supercapacitor material, and this lab introduces the concept of pseudocapacitance, in which current flows while still being governed by the Nernst equation (i.e., at equilibrium). Students conduct realistic and industrially relevant electrochemical experiments; they electro-deposit manganese oxide films and test them using cyclic voltammetry. Students compare the manganese oxide results to those from a nonpseudocapacitive system (i.e., a poor supercapacitor). In doing so, they learn the concepts of charge storage and energy and power (and their important differences), while reinforcing the physical-chemistry topics of thermodynamics and kinetics, all within a frame of familiar electrochemical knowledge (i.e., the Nernst equation). This lab can be completed in one 4 h laboratory period or in a 3 h period if the solutions are provided to the students or they prepare them a week in advance. Student interest and engagement is heightened by their being able to see the real-world applications and skills.
机译:随着对替代能源的需求变得越来越重要,能源研究和相关行业正在迅速扩大。该实验室将现有的能量存储研究纳入第二年实验室,在教导和加强物理化学概念时灌输现实世界,行业相关的知识和技能。使用氧化锰电极,水溶液-NA2SO4-电解质超级电容器系统,因为它没有空气或水敏感性,与大多数电池技术不同,因此在本科实验室设置中易于实施。氧化锰是一种越来越受欢迎的超级电容器材料,该实验室介绍了假偶联的概念,其中电流流动,同时仍然受到内部方程(即,均衡时)的管辖。学生进行现实和工业相关的电化学实验;它们可以使用循环伏安法测定氧化锰膜并测试它们。学生将锰氧化物的结果与非翼壳系统(即,贫困超级电容器)进行比较。在这样做时,他们了解了收费存储和能量和权力的概念(以及它们的重要差异),同时加强了热力学和动力学的物理化学主题,全部在熟悉的电化学知识(即,NERNST方程)内。该实验室可以在一个4 H实验期或3小时内完成,如果向学生提供解决方案,或者他们提前每周准备它们。学生的兴趣和参与通过他们能够看到现实世界的应用和技能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号