...
首页> 外文期刊>Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics >Direct Z-scheme porous g-C3N4/BiOI heterojunction for enhanced visible-light photocatalytic activity
【24h】

Direct Z-scheme porous g-C3N4/BiOI heterojunction for enhanced visible-light photocatalytic activity

机译:直接Z方案多孔G-C3N4 / BioI异质结以增强的可见光光催化活性

获取原文
获取原文并翻译 | 示例
           

摘要

Constructing direct Z-scheme heterojunction photocatalysts is a highly efficient pathway to completely utilize the high redox ability of photogenerated charge carriers. Herein, a direct Z-scheme porous g-C3N4 (Pg-C3N4)/BiOI heterojunction was constructed through the in-situ growth of BiOI on the surface of Pg-C3N4. First principle density functional theory calculations indicated that charge transfer would occur from Pg-C3N4 to BiOI due to the difference in their Fermi energies, resulting in a strong internal electric field (IEF) at the interface between Pg-C3N4 and BiOI. Under photoexcitation, the electrons in the conduction band (CB) of BiOI combine with the holes in the valance band (VB) of Pg-C3N4 with the help of IEF at the interface. A possible Z-scheme type charge transfer can be achieved. This special charge transfer mechanism greatly improved the separation efficiency of photogenerated charge carriers and maintained the high redox ability of photogenerated electrons in the CB of Pg-C3N4 and photogenerated holes in the VB of BiOI. Photocatalytic activities were estimated by the photodegradation of methylene blue under visible light. Results indicated that Pg-C3N4/BiOI exhibited higher photocatalytic performance than pure Pg-C3N4 and BiOI, which can be attributed to the Z-scheme type charge transfer between Pg-C3N4 and BiOI. This work provides new insights into the high photocatalytic activities of g-C3N4-based heterojunction photocatalysts. (c) 2018 Elsevier B.V. All rights reserved.
机译:构建直接Z形方案异质结光催化剂是一种高效的途径,可以完全利用光发化电荷载体的高氧化还原能力。这里,通过PG-C3N4表面的原位生长构建直接Z形方案多孔G-C3N4(PG-C3N4)/生物杂结。第一个原理密度函数理论计算表明,由于其FERMI能量的差异,PG-C3N4至BIOI发生电荷转移,从而在PG-C3N4和BIOI之间的界面处产生强大的内部电场(IEF)。在光呼吸中,Bioi的导通带(CB)中的电子在界面处的IEF的帮助下与PG-C3N4的价值带(VB)中的孔(VB)中的孔组合。可以实现可能的Z方案类型电荷转移。这种特殊的电荷传递机制大大提高了光生电载体的分离效率,并在BIO的VB中的CB中保持了光生电子中的光生电子的高氧化还原能力。通过可见光下的亚甲基蓝光降解估计光催化活性。结果表明,PG-C3N4 / BIOI比纯PG-C3N4和BioI表现出更高的光催化性能,其可归因于PG-C3N4和BioI之间的Z方案类型电荷转移。这项工作为基于G-C3N4的异质结催化剂的高光催化活动提供了新的见解。 (c)2018年elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号