首页> 外文期刊>The Journal of Chemical Physics >Quantum chemistry in arbitrary dielectric environments: Theory and implementation of nonequilibrium Poisson boundary conditions and application to compute vertical ionization energies at the air/water interface
【24h】

Quantum chemistry in arbitrary dielectric environments: Theory and implementation of nonequilibrium Poisson boundary conditions and application to compute vertical ionization energies at the air/water interface

机译:Quantum Chemistry在任意介电环境中:非醌泊松边界条件的理论与实现,以及在空气/水界面计算垂直电离能的应用

获取原文
获取原文并翻译 | 示例
           

摘要

Widely used continuum solvation models for electronic structure calculations, including popular polarizable continuum models (PCMs), usually assume that the continuum environment is isotropic and characterized by a scalar dielectric constant, epsilon. This assumption is invalid at a liquid/vapor interface or any other anisotropic solvation environment. To address such scenarios, we introduce a more general formalism based on solution of Poisson's equation for a spatially varying dielectric function, epsilon(r). Inspired by nonequilibrium versions of PCMs, we develop a similar formalism within the context of Poisson's equation that includes the out-of-equilibrium dielectric response that accompanies a sudden change in the electron density of the solute, such as that which occurs in a vertical ionization process. A multigrid solver for Poisson's equation is developed to accommodate the large spatial grids necessary to discretize the three-dimensional electron density. We apply this methodology to compute vertical ionization energies (VIEs) of various solutes at the air/water interface and compare them to VIEs computed in bulk water, finding only very small differences between the two environments. VIEs computed using approximately two solvation shells of explicit water molecules are in excellent agreement with experiment for F-(aq), Cl-(aq), neat liquid water, and the hydrated electron, although errors for Li+(aq) and Na+(aq) are somewhat larger. Nonequilibrium corrections modify VIEs by up to 1.2 eV, relative to models based only on the static dielectric constant, and are therefore essential to obtain agreement with experiment. Given that the experiments (liquid microjet photoelectron spectroscopy) may be more sensitive to solutes situated at the air/water interface as compared to those in bulk water, our calculations provide some confidence that these experiments can indeed be interpreted as measurements of VIEs in bulk water. Published by AIP Publishing.
机译:广泛使用的用于电子结构计算的连续溶解模型,包括流行的可极化连续型号(PCM),通常假设连续环境是各向同性的,其特征在于标量介电常数,ε。该假设在液体/蒸气界面或任何其他各向异性溶剂化环境下无效。为了解决这种情况,我们基于泊松等方程的解决方案的空间变化介电功能,epsilon(r)来介绍更一般的形式主义。受到不合格版本的PCMS的启发,我们在泊松等式的背景下发展了类似的形式主义,该方程式包括伴随溶质的电子密度突然变化的平衡介质反应,例如在垂直电离中发生的情况过程。开发了一种用于泊松等式的多档求解器以容纳用于离散三维电子密度所需的大的空间网格。我们应用该方法来计算空气/水界面的各种溶质的垂直电离能量(效果),并将它们与散装水中计算的倍数进行比较,仅在两个环境之间发现非常小的差异。使用大约两个溶剂化水分子计算的倍数与F-(aq),Cl-(水溶液),整齐的液体水和水合电子的实验非常一致,尽管Li +(aq)和Na +(aq)误差)有点较大。非限制校正在仅基于静态介电常数的模型上,通过高达1.2eV来修改倍数,因此必须与实验获得协议。考虑到实验(液体微喷射光电子能量谱)与散装水相比,在空气/水界面位于空气/水界面上的溶质,我们的计算提供了一些信心,即这些实验确实可以被解释为散装水中越伏的测量。通过AIP发布发布。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号