首页> 外文期刊>Physical review, B >Strain stiffening, high load-invariant hardness, and electronic anomalies of boron phosphide under pressure
【24h】

Strain stiffening, high load-invariant hardness, and electronic anomalies of boron phosphide under pressure

机译:压力下硼磷化硼的应变加强,高负荷不变的硬度和电子异常

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

New refractory hard materials with a favorable band gap are in high demand for the next-generation semiconductors capable of withstanding high temperature and other hostile environments. Boron phosphide (BP) is such an attractive candidate with exceptional properties; however, it has mainly been studied theoretically because of the difficulty in sample preparation. In this work, we report successful synthesis of large millimeter-sized single-crystal BP. The final product has a zinc-blende structure with a unique electronic structure and is optically transparent with a moderate band gap of similar to 2.1 eV. Our experiments, in conjunction with ab initio simulations, reveal that the compound exhibits extraordinary strain stiffening and unusually high load-invariant hardness of similar to 38 (3) GPa, which is close to the 40-GPa threshold for superhard materials, making BP the hardest among all known semiconductors. Based on the first-principles calculations, the fracture mechanisms in BP under tensile and shear deformations can be attributed to the formation of a metastable hexagonal phase. Further spectroscopic measurements indicate that an unusual electronic transition occurs at high pressures of similar to 13 GPa, resulting in an asymptotically enhanced covalent bonding state. The pressure dependence of multiphonon processes is also determined by Raman measurement. In addition, our studies suggest a phonon-assisted photoluminescence process and evidence for the photon-pumped etalon effect at 707 nm.
机译:具有有利的带隙的新型耐火硬质材料对能够承受高温和其他敌对环境的下一代半导体需求量很高。磷化硼(BP)是如具有特殊性质的有吸引力的候选者;然而,由于样品制备的困难,它主要研究过理论上。在这项工作中,我们报告了大型毫米大小的单晶BP成功合成。最终产品具有独特的电子结构锌 - 闪光结构,具有与2.1eV类似的中等带隙的光学透明。我们的实验与AB Initio模拟结合揭示了该化合物表现出非凡的应变加强和异常高负载不变的硬度,类似于38(3)个GPA,其接近超硬材料的40-GPA阈值,使BP成为BP所有已知的半导体中最难。基于第一原理计算,BP在拉伸和剪切变形下的断裂机制可归因于形成亚稳态六方相。进一步的光谱测量表明,在类似于13GPa的高压力下发生异常的电子转换,导致渐近增强的共价键合状态。多光处理的压力依赖性也通过拉曼测量来确定。此外,我们的研究表明,在707nm处的光子泵浦标准乐效应的声音辅助光致发光过程和证据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号