首页> 外文期刊>NeuroImage >Dynamic model for the tissue concentration and oxygen saturation of hemoglobin in relation to blood volume, flow velocity, and oxygen consumption: Implications for functional neuroimaging and coherent hemodynamics spectroscopy (CHS)
【24h】

Dynamic model for the tissue concentration and oxygen saturation of hemoglobin in relation to blood volume, flow velocity, and oxygen consumption: Implications for functional neuroimaging and coherent hemodynamics spectroscopy (CHS)

机译:血红蛋白组织浓度和氧饱和的动态模型与血容量,流速和氧气消耗相关:功能性神经测定和相干血液动力学光谱(CHS)的影响

获取原文
获取原文并翻译 | 示例
           

摘要

This article presents a dynamic model that quantifies the temporal evolution of the concentration and oxygen saturation of hemoglobin in tissue, as determined by time-varying hemodynamic and metabolic parameters: blood volume, flow velocity, and oxygen consumption. This multi-compartment model determines separate contributions from arterioles, capillaries, and venules that comprise the tissue microvasculature, and treats them as a complete network, without making assumptions on the details of the architecture and morphology of the microvascular bed. A key parameter in the model is the effective blood transit time through the capillaries and its associated probability of oxygen release from hemoglobin to tissue, as described by a rate constant for oxygen diffusion. The solution of the model in the time domain predicts the signals measured by hemodynamic-based neuroimaging techniques such as functional near-infrared spectroscopy (fNIRS) and functional magnetic resonance imaging (fMRI) in response to brain activation. In the frequency domain, the model yields an analytical solution based on a phasor representation that provides a framework for quantitative spectroscopy of coherent hemodynamic oscillations. I term this novel technique coherent hemodynamics spectroscopy (CHS), and this article describes how it can be used for the assessment of cerebral autoregulation and the study of hemodynamic oscillations resulting from a variety of periodic physiological challenges, brain activation protocols, or physical maneuvers.
机译:本文给出了量化组织的血红蛋白的浓度和氧饱和度的时间演变,如通过随时间变化的血流动力学和代谢参数确定的动态模型:血容量,流速,和氧的消耗。这种多室模型确定来自小动脉,毛细血管和包括该组织微脉管小静脉,并将它们作为一个完整的网络分开的贡献,而对微血管床的体系结构和形态的细节做出假设。在模型中的关键参数是通过毛细血管和氧释放的血红蛋白到组织及其相关联的概率的有效血液渡越时间,如由速率常数为氧扩散说明。在时域模型的溶液预测基于血液动力学-神经成像技术如功能近红外光谱(fNIRS),并且响应于脑激活功能性磁共振成像(fMRI)测得的信号。在频域中,该模型产生基于相量表示,其提供了用于相干血流动力学振荡定量光谱的框架的解析解。我术语这个新颖技术相干血流动力学谱(CHS),和本文介绍如何可以用于脑自动调节的评估和从各种周期性的生理挑战,脑激活协议或物理操纵所得的血流动力学振荡的研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号