...
首页> 外文期刊>Electrophoresis: The Official Journal of the International Electrophoresis Society >Design and optimization of a fused‐silica microfluidic device for separation of trivalent lanthanides by isotachophoresis
【24h】

Design and optimization of a fused‐silica microfluidic device for separation of trivalent lanthanides by isotachophoresis

机译:用同位变的融合二氧化硅微流体装置的设计与优化镧系元素分离三价镧系

获取原文
获取原文并翻译 | 示例
           

摘要

Abstract Elemental analysis of rare earth elements is essential in a variety of fields including environmental monitoring and nuclear safeguards; however, current techniques are often labor intensive, time consuming, and/or costly to perform. The difficulty arises in preparing samples, which requires separating the chemically and physically similar lanthanides. However, by transitioning these separations to the microscale, the speed, cost, and simplicity of sample preparation can be drastically improved. Here, all fourteen non‐radioactive lanthanides (lanthanum through lutetium minus promethium) are separated by ITP for the first time in a serpentine fused‐silica microchannel (70?μm wide?×?70?μm tall?×?33?cm long) in 10?min at voltages ≤8?kV with limits of detection on the order of picomoles. This time includes the 2?min electrokinetic injection time at 2?kV to load sample into the microchannel. The final leading electrolyte consisted of 10?mM ammonium acetate, 7?mM α‐hydroxyisobutyric acid, 1% polyvinylpyrrolidone, and the final terminating electrolyte consisted of 10?mM acetic acid, 7?mM α‐hydroxyisobutyric acid, and 1% polyvinylpyrrolidone. Electrophoretic electrodes are embedded in the microchip reservoirs so that voltages can be quickly applied and switched during operation. The limits of detection are quantified using a commercial capacitively coupled contactless conductivity detector (C 4 D) to calculate ITP zone lengths in combination with ITP theory. Optimization of experimental procedures and reproducibility based on statistical analysis of subsequent experimental results are addressed. Percent error values in band length and conductivity are ≤8.1 and 0.37%, respectively.
机译:摘要稀土元素的元素分析对于包括环境监测和核保护的各种领域至关重要;然而,目前的技术通常是劳动密集,耗时和/或昂贵的执行。在制备样品时出现难度,这需要分离化学和物理上类似的镧系元素。然而,通过将这些分离转变为微观尺寸,样品制备的速度,成本和简单性可以大大提高。这里,所有十四个非放射性镧系元​​素(通过乳酸含量胰岛胰岛)通过ITP在蛇形熔融二氧化硅微通道中首次分离(70ΩΩ0.7Ω·×70ΩΩ0.×70Ω·×33Ω·厘米)在& 10?min在电压≤8Ω·kV,具有对皮摩尔顺序的检测限。这次包括2?min电动喷射时间为2?KV将样品加载到微通道中。最终的前导电解质由10?mm乙酸铵,7μmα-羟基异丁酸,1%聚乙烯吡咯烷酮和最终终端电解质组成,由10×mm乙酸,7μmα-羟基异丁酸和1%聚乙烯吡咯烷酮组成。电泳电极嵌入微芯片储存器中,从而可以在操作期间快速施加和切换电压。使用商业电容耦合的非接触式电导检测器(C 4 D)来定量检测限,以与ITP理论结合计算ITP区域长度。解决了基于随后的实验结果统计分析的实验过程和再现性的优化。带长度和电导率的误差值分别≤8.1和0.37%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号