首页> 外文期刊>Earth and Planetary Science Letters: A Letter Journal Devoted to the Development in Time of the Earth and Planetary System >Iron isotopic fractionation in mineral phases from Earth's lower mantle: Did terrestrial magma ocean crystallization fractionate iron isotopes?
【24h】

Iron isotopic fractionation in mineral phases from Earth's lower mantle: Did terrestrial magma ocean crystallization fractionate iron isotopes?

机译:来自地球较低地幔的矿物阶段的铁同位素分级:陆地岩浆海洋结晶分馏铁同位素吗?

获取原文
获取原文并翻译 | 示例
           

摘要

Iron is the most abundant transition metal in the Earth's interior, yet considerable uncertainties remain as to why mantle-derived rocks have diverse iron isotopic compositions. In particular, the isotopic fractionation behavior of iron in the lower-mantle minerals bridgmanite and ferropericlase are largely unexplored. The reason is that it is challenging to study isotopic fractionation at the high pressures relevant to the deep mantle. Here we report in situ measurements of the mean force constants of iron bonds in these minerals pressurized in diamond anvil cells using the technique of nuclear resonant inelastic X-ray scattering (NRIXS). We find that the transition from high- to low-spin iron in ferropericlase ((Mg0.75Fe0.25)O) at approximately 60 GPa drastically stiffens its iron bonds in the low-spin state. The mean force constant of iron bonds in both Fe-bearing and (Fe,Al)-bearing bridgmanite exhibits softening by 21% at approximately 40-60 GPa, which seems to be associated with changes in the iron local environment during the transition from low to high quadrupole splitting states. These results indicate that in the lower mantle, low-spin ferropericlase is enriched in heavy iron isotopes relative to bridgmanite and metallic iron by +0.15 parts per thousand and +0.12 parts per thousand, respectively. Based on these results, we investigate whether terrestrial magma ocean crystallization could have fractionated iron isotopes. We conclude that this process cannot be responsible for the heavy iron isotope enrichment measured in terrestrial basalts. (C) 2018 Elsevier B.V. All rights reserved.
机译:铁是地球内部最丰富的过渡金属,但相当大的不确定性依然存在,为什么地幔岩石具有不同的铁同位素组成。特别是,在铁的低地幔矿物的同位素分馏行为bridgmanite和ferropericlase是很大的未开发。原因是,它是具有挑战性的有关地幔深处的高压研究同位素分馏。在这里,我们对这些矿物质在金刚石砧压利用核共振非弹性X射线散射(NRIXS)的技术,细胞铁债券的平均力常数的现场测量报告。我们发现,从高至低自旋铁ferropericlase过渡((Mg0.75Fe0.25)O),大约为60 GPA急剧变硬了铁债券的低自旋状态。在铁轴承既铁债券和平均力常数(铁,铝) - 轴承bridgmanite展品软化通过在大约40-60 GPA,这似乎从低的过渡期间与铁本地环境变化相关的21%高四极分裂状态。这些结果表明,在较低的地幔,低自旋ferropericlase在重的铁由分别0.15千分之和千分之0.12份,富含同位素相对于bridgmanite和金属铁。基于这些结果,我们研究地球岩浆海洋的结晶能否有分馏同位素铁。我们认为这个过程不能负责地面玄武岩测得的重的铁同位素富集。 (c)2018年elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号